
Improving Video Performance in VNC Under
Latency Conditions

Cynthia Taylor and Joe Pasquale
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
Email: {cbtaylor,pasquale}@cs.ucsd.edu

Abstract—Virtual Network Computing, or VNC, is a popular
thin client application used to access files and applications on
remote computers. However, VNC can suffer from significant
losses in throughput when there is high latency between the client
and server. These losses become especially apparent in the case
of video, where updates are both large and frequent.

In this work, we present a Message Accelerator proxy for
VNC. This simple but highly effective solution mitigates high
latency network effects for video performance while maintaining
the advantages of a client-pull system. By operating near/on the
server, it can send updates to the client at a rate corresponding
to proxy-server interactions which are faster than client-server
interactions. When testing using video, our Message Accelerator
design results in frame rates an order of magnitude higher than
plain VNC when running under high latency conditions.

I. INTRODUCTION

Thin client systems, with their ability to connect multiple
users to the same computer system, are a valuable tool
for supporting collaborative systems. Users can connect to
multiple desktop sessions on the same computer, allowing for
shared data and applications, or can have multiple connections
to the same desktop, allowing them to collaborate by actually
sharing the same virtual screen. VNC has been studied as a
tool for both synchronous and asynchronous collaboration [1],
[2]. VNC has also been used collaborative tools such as wall-
sized and tabletop displays [3]–[6]. The ability to run multiple
sessions on a single server offers other more system-related
advantages as well. Having all of the data and computation
running on a central server means that a business can just
update software on one computer instead of hundreds or
thousands of PCs running on employees’ desks, saving money
on maintenance. Keeping all data on a central server provides
security from lost laptops or disgruntled employees. Even the
electricity costs of running thin clients can be cheaper than
that of running PCs. As a result, many businesses have been
moving over to thin client systems [7], [8].

However, one problem with thin client systems is that they
may suffer from poor performance, resulting from a number of
factors. There is the computational overhead on the server side
of tracking and encoding display updates, and of decoding and
rendering them on the client side. There is the limiting factor
of bandwidth, or how much data can be sent across the network
in a given time period. Perhaps the most significant limiting
factor in thin client systems is network latency [9]. Latency

affects every message, regardless of its size, sent between the
client and server. These performance effects are especially
noticeable in media-intensive applications, such as video.

While performance is important to all tasks, it is especially
important for video. Highly interactive tasks usually have
lower update rates than video, as they are governed by the
user’s reaction time. Schmidt et al. performed a characteri-
zation of interactive applications that showed that input rates
are usually much lower than monitor refresh rates, indicating a
machine-independent upper bound on how fast humans man-
ufacture input events, and that seventy percent of events occur
with more than one hundred milliseconds between events [10].
He also showed that most user input events actually result in
very few pixels needing to be updated. These applications,
with their infrequent screen updates, are less impacted by high
network latency. In contrast, video applications require frame
updates every 30 to 60 milliseconds, and updates frequently
involve change in a large number of pixels. Because of its
frequent updates, video is especially impacted by high latency
conditions.

In this work, we focus on the thin client system VNC, or
Virtual Network Computing [11]. VNC is one of the most
widely used thin client systems. It has an open protocol, known
as the Remote Frame Buffer or RFB protocol, and there are
many open source implementations of both the client and
server. [11]–[16]. Due to its many implementations, which are
available for all major operating systems, it is possible to use
VNC across different computing platforms, allowing users to
access a Linux machine from a device running Windows, or
vice versa. Because it is open source, VNC has been one of
the more popular systems for thin client research. Research
on VNC has included adapting it for high resolution tiled
displays, adapting it to control home appliances, and adapting
it for optimal viewing on cellular phones, as well as trying
new data compression schemes [3], [4], [17]–[20]. With its
use in both real world and academic settings, VNC is one of
the most ubiquitous thin client systems.

In this work, we offer a way to mitigate VNC’s poor
video performance under high latency conditions. The solution
that we present is a very general and simple proxy, called a
Message Accelerator, that works with VNC to mitigate the
effects of network latency. The Message Accelerator runs on or
near the server machine and requests updates from the server

in a client-pull fashion, thus mimicking the VNC client. It
then forwards these updates to the client as soon as possible,
at the faster rate of proxy-server interactions rather than the
slower rate of client-server interactions. Because the Message
Accelerator does not wait to receive a request from the client
before sending, it is not affected by high network latency in
the same way that traditional client-pull systems are affected.

The Message Accelerator requires no changes to the existing
client or server, making it easy for a user to install (essentially
“plug and play”), and eliminating parallel code maintenance
issues. Using a Message Accelerator with VNC can result in
the client receiving updates an order of magnitude faster in
high latency situations. Our solution is specifically designed
for cases such as video, where all video updates are being
generated on the server, without depending on user input.

We will first provide some background and related work
in Section 2. In Section 3, we will go into more detail about
VNC. In Section 4, we will describe our changes to VNC.
In Section 5, we will discuss our experiments and results.
In Section 6 we describe how our system evolved from our
original design to the system we present here. We will briefly
discuss future works in Section 7, and then conclude in Section
8.

II. BACKGROUND AND RELATED WORK

This work is an improvement to the Virtual Network
Computing or VNC system [11]. The VNC system works
as a user-space application that requires no modifications to
either the operating system or user applications. The VNC
server continually scrapes the framebuffer, an area of memory
in which color values for every on-screen pixel are stored.
The VNC client sends a request about a specific on-screen
rectangle, and the server responds with an update consisting
of an encoding of the changes between now and the last time
the client requested information about that rectangle. We will
go into more detail about the operation of VNC in Section 3.

Thin client systems fall into two general categories in terms
of when the server sends an update to the client [21]. In
server-push systems, updates are sent to the client as soon
as the server generates them. For example, if the user is
playing video, in a server-push system, when a new frame
of video is played, the server will immediately send an update
to the client with the changes to the framebuffer. In client-pull
systems, the server waits to send an update until it receives an
explicit request from the client. If a user is playing video on
a client-pull system, when a new frame of video is available
or is generated, the server stores the changes it makes to the
framebuffer in an internal representation, and when the server
receives a request from the client, it sends an update containing
all the changes to the framebuffer since the last update. VNC
is a client-pull system.

The SLIM system offers a contrast to VNC [10]. SLIM uses
a very similar message protocol to VNC, but differs in other
ways. Instead of scraping the framebuffer to detect updates,
SLIM works as a virtual device driver and offers a software
library with display options for higher-level applications. In

How VNC Works

• It runs at the application layer and reads updates

from the framebuffer.

VNC server

application

VNC

client

frame

bufferrequests

updates

internet

Fig. 1. The VNC server scans the framebuffer and sends updates to the
client.

SLIM’s implementation, X-Windows is modified to use the
SLIM virtual device driver so that applications can either
explicitly invoke SLIM display commands through its library,
or pass their display commands to X-windows and have it
forward them to SLIM. In this way, applications with spe-
cific display needs such as multimedia applications can send
commands to SLIM that include more semantic information
about how they should be processed. However, applications
must be specifically altered to take advantage of this. Even
if no user-level applications are modified, at the very least
the window manager must be modified, and the modified
applications must be kept updated in parallel with the original
applications. The system is also limited to operating systems
with available source code because of this. SLIM uses a server-
push update system, and requires a network and machines
capable of handling server-push updates with no loss of data.

THINC also acts as a virtual device driver, but at the abstract
hardware level so no changes need to be made to applications
or operating system [22]. THINC also uses a similar message
protocol to SLIM and VNC. Device driver commands are
tracked in an intermediate encoding until they are finally
translated into messages and sent to the client. Commands are
highly processed while in their intermediate encoding to avoid
sending any information that is fully or partially overwritten
by later updates. THINC is a server-push system, but rather
than sending messages immediately, before sending a message
to the client it checks the socket to see if the write will block,
and waits until the buffer is next flushed on blocking. THINC
uses special handling for video, using a stream-based system to
avoid jitter between frames. The special handling of video adds
even more complexity to an already quite complex system. In
addition, since device drivers are OS-specific, there must be
a virtual device driver written for each operating system on
which THINC is used.

This work was also informed by the papers of Nieh et
al, which describe and compare many currently existing thin
client systems [9], [23], [24]. Nieh stresses that the perfor-
mance of thin client systems is especially affected by latency,
rather than bandwidth, and that client-pull systems are affected
more than others due to the fact that they must send two
messages for each update.

III. DETAILS OF VNC
In this section, we will describe the basic workings of a

particular implementation of VNC, TightVNC [15]. These

details can easily be generalized to other VNC systems. We
explain the concept of client-pull, the core operating feature
of this and all VNC systems, in the context of a real working
system that is publicly available and in wide use. We will focus
on the implementation of the RFB protocol and the sending
of messages between the client and server [12]. The system is
illustrated in Figure 1.

A. The VNC Client

The VNC client is implemented as a very simple program;
it is not multithreaded, and it blocks on reads and writes.
After a brief initialization phase in which it exchanges setup
information with the server, it falls into a while(true) loop. In
this loop, it first waits to receive an update from the server. It
processes the update and redraws the display. Then it issues a
request for a new update.

The client intersperses read calls throughout the processing
of the update, rather than reading the entire update and then
processing it. The structure of the update encourages this: it
contains a general header containing information about the
message, and then a series of rectangles, each with a rectangle
header that contains the dimensions of the data following it and
its encoding. Due to this message structure, it is impossible
to tell how many bytes an update is without processing a
significant portion of the message. An additional advantage is
that by processing the message as it is being read, the client
can get as much processing as possible done before it has
received the message in its entirety.

There are times when the client has processed as much of
the update as it has received, but cannot read any more from
the server. When this happens, the client uses the idle time to
collect user input, such as mouse movement and typing, and
sends the appropriate messages to the server. This is the only
time when it processes user input.

B. The VNC Server

The VNC server is more complex than the client. As the
server runs, it notes when the framebuffer is changed. It stores
an internal representation of the area modified, and the new
modifications made to it. This is called the modified region.
The server continues to add any modifications made to the
modified region until it receives a request from the client.

The requests the client sends are very short, containing just
the dimensions of a rectangle, and a bit specifying whether
the update is incremental or not. The rectangle is always the
dimensions of the client’s display window and rarely changes
within a session. The first request the client sends is not
incremental, and all requests afterwards are incremental. If
the request the server receives is not incremental, the server
immediately sends all of the framebuffer information for the
rectangle.

If the request is incremental, the server compares the
rectangle the client requested to the modified region. If they
overlap, the server sends an update with the modifications
within the overlapping area, and clears those modifications
from the modified region. If the areas do not overlap, as in

the case where no changes have been made to the framebuffer
since the last request, the server saves the rectangle as the
requested region. The next time the framebuffer is modified,
the server checks to see if the modification falls within the
requested region. If it does, the server sends the client an
update with the new modifications and deletes the requested
region. If it does not, the server adds the modifications to the
modified region and keeps the requested region. This means
that the server can send an update in response to a request
from the client any time after it receives the request. If the
server receives more than one request before there are any
modifications to the requested region, it will just send one
update in response to all requests. We emphasize though that
the server will only send an update if it receives a request from
the client, and no sooner than having received the request.

C. VNC as a Client-Pull System

As described above, VNC is a client-pull system. This has
both advantages and disadvantages in terms of system per-
formance. Having the server wait until it receives a request to
send an update provides a very simple flow-control mechanism
to prevent the client from being overwhelmed by updates.
The client will never receive an update that it is not ready
to process, since the server sends updates only after the client
specifically requests them. This is especially good for the types
of highly resource-limited clients that motivate this work.

However, the sending of requests means that each update
will accumulate at least twice as much network latency as
updates in the server push system. In the rest of this paper,
we will describe how we modify the VNC system to retain
the advantages of a client-pull system, while reducing the
problems caused by this additional latency.

IV. OUR IMPROVEMENTS TO VNC

A. Goals

The goal of our improvements to VNC is to create better
video performance in the case of high latency between the
server and client. We cannot change the time between when
an action (such as a mouse movement or keystroke) is taken
on the client machine and when the client receives an update
that reflects that action. What we can change is the number of
updates the client receives between these two events. The more
updates the client receives, the less jumpiness the user will
experience. This is especially important for video applications,
where the number of updates per second the client receives
becomes the number of frames per second the user sees.

We would like our changes to be as “plug and play” as
possible, involving little to no effort on the part of the user.
With that in mind, we have designed our system so that our
improvements do not require changing any of the existing
client or server code, but only the insertion of a proxy. With
these design choices, we avoid the issues of parallel code
maintenance, as any VNC system that adheres to the standard
RFB protocol will be compatible with our proxy [12].

Pipelining Updates

• The proxy sends requests to the client at the rate the client is
processing, without waiting for a request.

VNC

serverVNC

client

requests

updates

internet

Message

Acceleratorslow fast

 requests

updates

Fig. 2. The Message Accelerator quickly acquires an update from the server,
then pipelines sending the update to the client.

B. Design

Our changes to VNC take the form of adding a Message
Accelerator proxy between the client and server. We run the
Message Accelerator on the same machine as the server, but it
could also run on a separate machine (but close to the server
to minimize network delay) if the server is not amenable to
running the proxy. The Message Accelerator requests updates
from the server, and forwards them to the client. It is logically
invisible to both client and server.

Since the Message Accelerator is on the same machine as
the server and communication does not have to travel over
the network, it can make requests in a client-pull manner at
a much faster speed than the actual client. It requests new
updates at the rate that it can send them to the client. Since
the client is single-threaded and performs reads interspersed
with processing, it will never read at a faster rate than it can
process. The Message Accelerator checks to make sure it can
write to the client’s socket without blocking before it sends the
update, so it will never send at a rate faster than the network
can handle. As a result of all of these factors, the Message
Accelerator sends updates at the client’s natural processing
rate, regardless of network latency.

The Message Accelerator works by pipelining updates to
the client. Since the Message Accelerator is running on or
near the server, it can very quickly send requests to the server
and receive updates in response. The Message Accelerator can
duplicate and resend client requests, without needing to wait
for a new request from the client. It then sends the updates
from the server to the client at a constant rate, regardless of
network latency. This is illustrated in Figure 2.

C. Implementation

The VNC session starts up with an initialization period
during which the Message Accelerator simply forwards every-
thing sent to it by the client to the server, and everything sent to
it from the server to the client. This period is where the client
sends the server information such as the user’s password, what
encoding the client would like to use, and other parameters.
It is necessary for the Message Accelerator to simply forward
this information, since there is no way for it to know these
parameters ahead of time.

Once the initialization process is over, the Message Accel-
erator settles into a loop, illustrated in the algorithm below.

whi le (True) {
s e l e c t () ;

i f (can r e a d s e r v e r) {
u p d a t e s [r e c e i v e d] = r e a d (s e r v e r) ;
r e c e i v e d = r e c e i v e d + 1 ;
unansweredReques t = F a l s e ;

}

i f (can w r i t e c l i e n t) {
i f (s e n t < r e c e i v e d) {

w r i t e (c l i e n t , u p d a t e s [s e n t]) ;
s e n t = s e n t + 1 ;

}
}

i f (can r e a d c l i e n t) {
r e q u e s t = r e a d (c l i e n t) ;

}

i f (can w r i t e s e r v e r) {
i f ((! unansweredReques t)

&& (r e c e i v e d − s e n t < 1)) {
w r i t e (s e r v e r , r e q u e s t) ;
unansweredReques t = True ;

}
}

}

This loop constantly polls to check if either the server or
client are available for reading or writing. The client sends
short ten byte requests that the Message Accelerator saves
and sends to the server. The server sends large updates (an
average size for typical desktop video is around 0.9 MB) that
the Message Accelerator forwards to the client. The Message
Accelerator will often receive partial updates from the server,
and will have to assemble an update over many reads.

If the Message Accelerator can read from the server, it
reads everything available, and then parses it to see if it is
a complete update. If the update is complete, it marks that the
server is ready to receive the next request, since in a client-
pull system we do not want to send a request until we have
fully received an update. If the update is not complete, it saves
what it has received so far and waits for more. After it has
read and parsed the available information from the server, the
Message Accelerator updates variables that keep track of the
number of complete updates and bytes of partial updates it
has received.

If the Message Accelerator can write to the client, it writes
as much as it can, and then records how much it has written.
When the Message Accelerator can read from the client, it
reads a request, and saves it to send to the server. Since the
client always sends a single complete request, the Message
Accelerator does not have to do any sort of book-keeping for
it. If the client’s display dimensions change, the client will
change the rectangle dimensions in the request it sends, and
all the updates the server sends after it receives this request
will reflect that change.

When the server is available for writing, the Message
Accelerator first checks to make sure that it has received a

complete update since the last time it sent a request. It then
compares the number of updates it has received from the server
to the number of updates it has forwarded to the client. If it
has sent all of the updates it has received, it sends a request
to the server. Otherwise, it does nothing.

The Message Accelerator sends to the client whenever the
client will not block its write (similar to the send mechanism
in the THINC system [22]). Because we check to make sure
that the write will not block before we send it, the rate at which
the Message Accelerator can send to the client is effectively
controlled by how fast the client can process the updates.
However, because the Message Accelerator sends requests to
the server even if it has not yet received a new request from
the client, it is not affected by network latency in the same
way as a simple client-pull system.

The Message Accelerator sends requests to the server at the
same rate that it is capable of sending updates to the client.
It must keep updates buffered to make sure it always has
something ready to send to the client. By buffering the bare
minimum of updates, we minimize the effects of changing
send rates. If the Message Accelerator was buffering a large
number of updates and the speed at which it was sending
to the client changed, these buffered updates would appear
in fast motion (i.e., fast forward fashion) if the sending rate
decreased, and in slow motion if the sending rate increased.
In addition, perception of any user input would be delayed
until all of the buffered updates had been sent. However, in
order for maximum performance results, we do want to always
have an update prepared to send to the client as soon as we
receive a request. To satisfy both of these constraints, the
maximum number of updates that the Message Accelerator
should have buffered at any time in order to always have
something ready to send to the client is d serverprocessingtime

acceleratorsendtime e.
Because it generally takes the server less time to process an
update and send it to the Message Accelerator than it takes
the Message Accelerator to send that update to the client, this
number is typically one.

V. PERFORMANCE EVALUATION

A. Experimental Design

As described above, after initialization the VNC Client goes
into a loop where it reads and processes an update, sends
a request to the server, and then waits for the next update.
To compare the performance of a standard (i.e., no Message
Accelerator) and an improved (i.e., with Message Accelerator)
system, we instrumented the client to measure how long it
takes for the client to go through each iteration of this loop.
Since the client does this for each update it displays, the faster
it goes through this process the faster it displays updates. Since
this measurement is being taken in the client, it is blind to
whether or not the system is using the Message Accelerator.

To test the systems, we need a media intensive application
with many framebuffer updates per second. We used an
episode of the television show Angel, playing on a loop
in the VLC media player. Our testing was done with the
client running on a Dell Vostro 200 machine with the Ubuntu

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

Up
da

te
s

pe
r S

ec
on

d

Network Latency in ms

Unmodified System
Message Accelerator

Fig. 3. The graphs show the median video update rate for both unmodified
system and message-accelerated system, as a function of network latency.
As the network latency increases, the update rate rapidly decreases in the
unmodified system, but remains high and fairly constant with the Message
Accelerator.

Intrepid Ibex OS, and the server and Message Accelerator
running on a Dell Optiplex 755 with the Fedora OS. All TCP
settings were at the default.

To simulate network latency, we use the netem Network
Emulator to insert artificial network delay [25]. To generate
measurements, we leave the server running, and run a script
that runs the client connected directly to the server for one
minute, and then runs the client connecting through the
Message Accelerator for one minute. It goes through this loop
ten times. All of our experiments were run using the raw
encoding of both systems. (We used the raw encoding because
it was the easiest to implement. In a production setting, better
performance could be achieved by using different encodings.)
By running first unmodified VNC and then VNC with the Mes-
sage Accelerator, any network or processing effects outside of
our system will affect both systems. All reported times are in
milliseconds (ms).

B. Results

Figure 3 displays the median rate of both systems in
updates per second. The unmodified VNC system is drastically
impacted by network latency. With network latency of just 20
ms, the display rate at the client has almost halved. At network
latency of 150 ms, the display rate is ten times lower than it
was with no network latency. In contrast, the results from VNC
with the Message Accelerator show that there is no significant
impact on the median update time with increasing network
latency. While the update rate begins to dip starting at a latency
of 50 ms, it never gets worse than a reduction by 10%, even
up to 300 ms. The lowest point in the dip in rate that occurs
around 150 ms was a phenomena that occurred consistently in
testing. Preliminary experiments indicate that altering the TCP
window size moved or eliminated this drop in rate, so at this
time we believe it is an artifact of our default TCP window

TABLE I
EFFECTS OF NETWORK LATENCY ON CLIENT INTER-UPDATE TIME. THE MEDIAN INTER-UPDATE TIME STAYS FAIRLY CONSTANT WITH THE MESSAGE

ACCELERATOR, BUT RAPIDLY GROWS IN THE UNMODIFIED SYSTEM. DUE TO OUTLIERS AND OTHER EFFECTS, THE MEAN AND STANDARD DEVIATIONS
GROW IN BOTH SYSTEMS, BUT MUCH LESS SO WITH THE MESSAGE ACCELERATOR.

Unmodified System Message Accelerator
Latency Median Mean St Dev Median Mean St Dev
0 76.9 77.3 4.5 76.0 76.1 2.6
10 96.8 101.5 26.7 75.9 76.3 7.6
20 138.6 150.5 69.3 75.9 77.2 14.5
30 198.7 225.3 122.1 75.9 76.8 22.0
40 258.4 301.4 174.9 75.9 79.6 41.9
50 318.6 382.4 235.0 76.0 80.2 45.3
100 620.5 925.7 1117.9 83.1 111.8 172.0
150 920.6 1544.6 1243.3 86.4 128.3 187.1
200 1220.2 2313.1 1861.8 79.5 157.6 317.9
250 1520.8 3183.6 2500.7 79.2 182.4 366.5
300 1820.9 3723.3 2842.7 80.4 252.7 694.2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 106

Network Latency in ms

Up
da

te
 T

im
e

in
 m

s

Message Accelerator
Unmodified System

Fig. 4. Standard deviation of client update times in ms. The standard
deviation quickly grows in the unmodified system, reflecting the uneven rate
at which frames of video are displayed.

size. Even with this dip at 150 ms, compared to the unmodified
system, the Message Accelerator system is outperforming the
unmodified system by an order of magnitude.

Table I shows the inter-update times (reciprocal of the
update rate) for both the unmodified system and message-
accelerated system. For both systems, we see that the mean
inter-update time is significantly higher than the median. This
is due in part to some extreme outliers, where the update takes
significantly longer than normal. Some of these outliers are
the first update sent in a session. The first update takes a long
time to send because display data is not yet being buffered,
and is much larger than the later updates because it contains
the entirety of the frame buffer. There are also outliers due to
packets being lost or sent out of order, since packets re-sent
by the TCP protocol are affected by the network latency.

On a qualitative and subjective note, while watching the
videos, the unmodified system becomes noticeably jittery with
just 20 ms of latency, and becomes completely unwatchable
with 100 ms of latency. At 100 ms, the unmodified VNC
system demonstrates user observable delay while rendering

How VNC Works

• It runs at the application layer and reads updates from the

framebuffer.

client machine

VNC

client

requests

updates

wi-fi

server machine

VNC

Server

accelerator machine

Message

Accelerator

requests

updates

internet

Fig. 5. In our original Design, the message accelerometer was on a separate
machine.

single frames, and the video becomes a series of semi-related
frames with no illusion of movement between them. In the
VNC system with the addition of our Message Accelerator,
the video is still very watchable even at 300 ms, with very
little noticeable lag or jitter.

As shown in Figure 4 (as well as Table I), we also observe
that the standard deviation rises much more sharply in the un-
modified system, quickly becoming ten times higher than that
of the system with the Message Accelerator. This demonstrates
that the difference in client display times between frames is
much larger in the unmodified system. Disparate rendering
times such as this mean that video plays at a jerky, uneven
rate, alternately appearing sped up and slowed down.

Overall, we see that adding the Message Accelerator to
VNC drastically improves the frame rate under network la-
tency, even when the latency is not that large. With the
Message Accelerator, the time it takes an update to be dis-
played remains consistent over increased network latency, even
when the latency becomes quite high. By both qualitative and
quantitative measures, the system is much improved by the
addition of the Message Accelerator.

VI. THE EVOLUTION OF THE MESSAGE ACCELERATOR

Over the course of designing our system, we made many
changes from our original design. Our system evolved as we
learned more about the intricacies both of VNC and TCP. We
offer this section on the evolution of our Message Accelerator
to provide some insight on the inner workings of VNC and
the lessons we learned.

A. The Original System

In our original design for the Message Accelerator, illus-
trated in Figure 5, it would have resided on its own machine,
one that was approximately one WiFi hop away from the client
machine. In this position, the latency between the Message
Accelerator and client would be small, e.g., around 3 ms
in a typical wireless-access network environment. With its
ability to quickly communicate with the client, the Message
Accelerator would measure the rate at which the client was
capable of processing updates, and then send requests to the
server at this rate. Because the Message Accelerator was not
waiting to receive a new update before it sent the next request,
it could send requests and receive updates at the rate at which
the client was processing them, regardless of network latency.
The Message Accelerator would then buffer the updates from
the server, and dispense them to the client in a client-pull
fashion, sending a complete update in response to a request.

B. The Message Accelerator without Update Delimitation

One of the first problems we discovered with this system
was that waiting until the Message Accelerator had received
the complete update from the server before we sent it to
the client was causing a huge performance hit. The Message
Accelerator was reading the update in from the server one
packet at a time and waiting until the Message Accelerator had
gotten a complete update before sending it to the client. It then
sent it to the client, which then read it in a little bit at a time.
This was causing a huge amount of overhead. With no network
latency, it was taking an average of 103 ms for the client to
receive and process an update with the Message Accelerator,
as compared to 77 ms without the Message Accelerator. We
changed our Message Accelerator design so that instead of
collecting a complete update and sending it in response to a
client request, the Message Accelerator forwarded everything
it received from the server to the client immediately. This
meant that the client could immediately process as much of the
update as it had received, taking advantage of its interleaving
of network reads and update processing.

The Message Accelerator no longer had to parse the updates
as it read them in, or have any internal representation of an
update. It could simply read data in from the server and
immediately forward it to the client. This also meant that
our system was no longer a true client-pull system, and
no longer had the built-in client-pull safeguards. To avoid
overloading the client, we were relying on a combination of
sending requests at the same rate the client was processing, and
checking to make sure writes to the server would not block.
This change significantly increased performance, bringing the
time it took the client per update down to an average of 87
ms.

C. The Server Accelerator and Client Accelerator

We next discovered that sending requests to the server in
a non-client pull fashion was causing delays. The server is
designed so that if it receives multiple requests before it is
ready with an update, it will just send one update in response.

When the Message Accelerator sent requests at a very fast
rate, the server would frequently process and then ignore
requests that came too close together, so it was doing all of
the work of reading and parsing a request without sending
more frequent updates in response. We expected there would
be a performance advantage in sending requests to the server
in a client-pull fashion, but with the Message Accelerator on
a machine next to the client, we could not do that without
suffering from network latency in the same manner as a system
without the Message Accelerator.

So we added another accelerator, one that was placed on the
same machine as the server. This new Server Accelerator read
requests from the Client Accelerator, and forwarded them to
the server in a client-pull system, then forwarded the updates
it got from the server back to the Client Accelerator. When the
Server Accelerator was able to write to the server, it checked
if it had received a new request from the client, and if it had
been sent a full update in response to the last sent request. If
both those checks passed, it sent a new request to the server.
We were still depending on the Client Accelerator to set the
rate at which the requests were sent.

D. Automatically Detecting Request Rate

Our original design for the Message Accelerator automat-
ically determined the amount of time it took the client to
process the request, completely separate from the time it took
the update to get to the client over the network. The Message
Accelerator would then send requests to the server at that rate.
In this way, the system would be able to run at optimal speed,
regardless of network latency. If the rate at which the client
received requests was reflected in the measurement of how
fast it was processing, we could suffer from a drift effect
in the feedback loop, where the rate at which the Message
Accelerator sent requests got slower in response to the client
receiving and processing messages more slowly, which in turn
was due to the slowing Message Accelerator request rate.

Exactly how to measure pure processing was unclear, espe-
cially given the interleaving of network reads and processing.
We once more had to add knowledge and processing of the
updates into the Client Accelerator, after taking them out when
the Client Accelerator was simply forwarding all data from the
server. However, the Client Accelerator continued to forward
data from the server immediately after receiving it, sending
partial updates to the client, in order to keep the performance
advantages.

Measuring the time from when the Client Accelerator began
sending the update to when it received the next request from
the client would completely capture the time it took the client
to process the update. However, it would also be highly
affected by the time it took to send the update to the client,
especially now that the Client Accelerator was forwarding
partial updates as it received them. We tried measuring the
time from after the Client Accelerator had finished sending the
update to when it received a new request from the client, but
that returned very small times that did not capture the amount

of time the accelerator was spending processing, again due to
the interleaved reads.

In experiments with the Server Accelerator, we had ob-
served that the server sent updates to the Server Accelerator
much faster than the Server Accelerator could send them to the
client. This resulted in a slow-motion effect when the client
displayed the updates, since they were being shown on the
client at a much slower rate than they had been generated on
the server. To limit this effect, we put in checks so that the
Server Accelerator would only prefetch a limited number of
updates, and would wait to send requests to the server until
it had sent these updates to the client. We noticed that with
higher network latencies, the Server Accelerator was sending
requests to the server at the rate at which it could send updates
to the client, since this was higher than the rate at which the
Client Accelerator was sending requests. Because we were
checking that the client would not block before we wrote to it,
the Server Accelerator could not send faster than the network
could handle. Because of the interleaving of network read and
processing, the Server Accelerator could not send faster than
the client could process. Since the Server Accelerator is always
sending as much data as it can without blocking regardless of
how long it takes to hear back from the client, it is not affected
by network latency in the same way as a purely client-pull
system.

We removed the Client Accelerator, and had the Server
Accelerator send to the client as fast as it could without
blocking. When the Server Accelerator can write to the server,
it checks to see if it has received a full update in response
to the previous request, and if it has already sent all of the
updates its received to the client. If both checks pass, it sends
a request to the server.

With this simple mechanism, we no longer had to worry
about separating processing time from network time. We also
no longer had to calculate an explicit rate at which to send
updates. By limiting the number of updates the Message
Accelerator prefetched, we ensured that the updates were being
generated by the server at the same rate they were being
received and processed by the client, and thus we avoided
any slow motion effects.

E. TCP Window Size

In all versions of our accelerator that featured the Client
Accelerator, we found that making changes to TCP window
size had a significant effect on performance. We experimented
with very small and very large window sizes, and discov-
ered that the optimal performance was when window sizes
were large enough to allow a number of updates within a
TCP window, but small enough that dropped packets were
discovered relatively quickly. The TCP defaults resulted in
our system running with a median time of 257 ms per update
with a 100 ms network delay. Changing the TCP window
size to 32 MB resulted in a median time of 96 ms with
a network latency of 100 ms, and additionally setting the
Selective Acknowledgment flag got our median time down
to 85 ms.

However, when we removed the Client Accelerator and
once more had just the server and client machine, we found
that changing the TCP window size and flags had very little
effect on performance. With a network latency of 100 ms, the
Message Accelerator had a median time of 79 ms with the
default settings, a median time of 81 ms with a window size
of 32 MB, and a median time of 79 ms with the higher window
size and the Selective Acknowledgment flag.

VII. FUTURE WORK

Using an adaptive message-accelerating proxy to improve
the performance of client-pull systems may be an approach
that can be extended to other systems. The message modifying
program offers a simple way to improve performance or add
additional features, is easy to deploy, and works with existing
binaries. It does not suffer from problems of parallel code
maintenance, and will continue to work as long as the message
format between the client and server remains the same. The
proxy can even be deployed to a different machine from the
server, and still offer performance advantages.

There are additional ways that a modifying proxy could be
used with thin client systems. The proxy could dynamically
tightly compress updates when network speeds were low, and
uncompress when the client device had low batteries or other
computational issues. With an additional client application,
the server application could encrypt updates, and the client
application could decrypt them either on the client machine, or
on a machine with a trusted network connection to the client.
The server application could also perform machine vision tasks
such as object detection or face recognition.

Clearly, adding an adaptive proxy to a client-pull system of-
fers any number of ways to improve performance or transform
data. Updates can be buffered, information can be cached, or
messages can be modified in a wide variety of ways. While
some systems have taken some of these approaches, we are
not aware of any other system that uses a proxy for message
acceleration.

VIII. CONCLUSION

Adding a Message Accelerator proxy to a VNC system is
a very simple but highly effective way of improving video
performance with VNC under high latency conditions tenfold.
Even with small amounts of network latency, video perfor-
mance is as good or better than an unmodified VNC system.
It is easy to install, requiring no recompilation of client or
server code. The Message Accelerator virtually erases frame-
rate reduction due to the negative effects of network latency
on client-pull systems. A video displayed using the Message
Accelerator system will look almost the same, in terms of
frame rate, with a 300 ms network latency as it does with a 3
ms network latency, while a video playing on an unmodified
system will take ten times as long to display updates when
latency increases to 100 ms as it would at 3 ms.

REFERENCES

[1] S. Li, Q. Stafford-Fraser, and A. Hopper, “Integrating synchronous
and asynchronous collaboration with virtual network computing,” IEEE
Internet Computing, vol. 4, no. 3, pp. 26–33, 2000.

[2] A. Adler, J. Nash, and S. No
”el, “TellTable: a server for collaborative office applications,” in Proc.
CSCW, 2004, pp. 6–10.

[3] Y. Liu and O. J. Anshus, “Improving the performance of vnc for
high-resolution display walls,” Collaborative Technologies and Systems,
International Symposium on, vol. 0, pp. 376–383, 2009.

[4] D. Stødle, J. M. Bjørndalen, and O. J. Anshus, “De-Centralizing the
VNC Model for Improved Performance on Wall-Sized, High-Resolution
Tiled Displays,” in NIK ’07: Norsk Informatikkonferanse. tapir
akademisk forlag, Nov. 2007, pp. 53–64.

[5] L. Renambot, B. Jeong, R. Jagodic, A. Johnson, and J. Leigh, “Col-
laborative Visualization using High-Resolution Tiled Displays,” ACM
CHI Workshop on Information Visualization Interaction Techniques for
Collaboration Across Multiple Displays, 2006.

[6] K. Nakashima, T. Machida, H. Takemura, and K. Kiyokawa, “A 2D3D
integrated tabletop environment for multi-user collaboration,” Computer
Animation and Virtual Worlds, vol. 18, no. 1, pp. 39–56, 2007.

[7] C. Lawton, “’Dumb Terminals’ Can Be a Smart Move,” The Wall Street
Journal, January 2007.

[8] D. Tynan, “Think Thin,” InfoWorld, July 2005.
[9] A. Lai and J. Niegh, “Limits of Wide-Area Thin-Client Computing,”

Proc. SIGMETRICS 2002, pp. 228–239, 2002.
[10] B. K. Schmidt, M. S. Lam, and J. D. Northcutt, “The interactive

performance of slim: a stateless, thin-client architecture,” in Proc. SOSP
’99. ACM Press, 1999, pp. 32–47.

[11] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual
network computing,” Internet Computing, vol. 2, no. 1, pp. 33–38, 1998.

[12] T. Richardson, “The RFB Protocol,” RealVNC Ltd, Tech. Rep., 2007.
[13] “RealVNC,” http://www.realvnc.com/. [Online]. Available: http://www.

realvnc.com/
[14] “Chicken of the VNC,” http://sourceforge.net/projects/cotvnc. [Online].

Available: http://sourceforge.net/projects/cotvnc/
[15] “Tight VNC,” http://www.tightvnc.com/. [Online]. Available: http:

//www.tightvnc.com/
[16] “UltraVNC,” http://www.uvnc.com/. [Online]. Available: http://www.

uvnc.com/
[17] T. Haraikawa, T. Sakamoto, T. Hase, T. Mizuno, and A. Togashi,

“µvnc over plc: a framework for gui-based remote operation of home
appliances through power-line communication,” Consumer Electronics,
IEEE Transactions on, vol. 48, no. 4, pp. 1067–1074, Nov 2002.

[18] B. Shizuki, M. Nakasu, and J. Tanaka, “VNC-based access to remote
computers from cellular phones,” in Proceedings of the IASTED Inter-
national Conference on Communication Systems and Networks (CSN
2002). Citeseer, 2002, pp. 74–79.

[19] X. Zhang and H. Takahashi, “A Hybrid Data Compression Scheme for
Improved VNC,” Systemics, Cybernetics and Informatics, vol. 5, no. 2,
pp. 1–4, 2007.

[20] K. Kaplinsky, “VNC tight encoder-data compression for VNC,” in
Modern Techniques and Technology, 2001. MTT 2001. Proceedings of
the 7th International Scientific and Practical Conference of Students,
Post-graduates and Young Scientists, 2001, pp. 155–157.

[21] S. Rao, H. Vin, and A. Tarafdar, “Comparative Evaluation of Server-push
and Client-pull Architectures for Multimedia Servers,” in Proceedings
of NOSSDAV, pp. 45–48, 1996.

[22] R. A. Baratto, J. Nieh, and L. Kim, “THINC: A Remote Display
Architecture for Thin-Client Computing,” Department of Computer
Science, Columbia University, Computing Science Technical Report
CUCS-027-04, 2004.

[23] J. Nieh, S. J. Yang, and N. Novik, “A Comparison of Thin-Client
Computing Architectures,” Department of Computer Science, Columbia
University, Computing Science Technical Report CUCS-022-00, 2000.

[24] ——, “Measuring thin-client performance using slow-motion bench-
marking,” ACM Trans. Comput. Syst., vol. 21, no. 1, pp. 87–115, 2003.

[25] “NetEm,” http://www.linux-foundation.org/en/Net:Netem. [Online].
Available: http://www.linux-foundation.org/en/Net:Netem

