
The Proximal Workspace Architecture:
A Latency-focused Approach to Supporting Context-Aware Applications

Cynthia Taylor
Thesis Advisor: Joe Pasquale

Department of Computer Science and Engineering, University of California, San Diego
cbtaylor@cs.ucsd.edu

DOCTORAL DISSERTATION EXTENDED ABSTRACT

ABSTRACT

We are developing a new enhanced cloud-based comput-
ing architecture, called the Proximal Workspace architec-
ture to allow access and interaction between lightweight
devices, and applications that represent a new genera-
tion of computation-and-data-intensive programs. We are
developing a new system architecture based on support-
ing workspaces which provide nearby computing power to
the users devices and thus mediate between them and the
clouds computing resources. Specifically, a workspace pro-
vides a set of middleware utilities designed to exploit local
resources, and provide specific functions such as render-
ing of graphics, pre-fetching of data, and combining data
from different servers. More generally, the workspace is
designed to run any subset of activities that cannot be run
on a user’s device due to computation speed or storage size,
and cannot be run on a cloud server due to network latency.

KEYWORDS: Thin Clients, Context-Aware, Multi-
media, Latency, Distributed Computing.

1. INTRODUCTION

In this work, our goal is to make a new generation of
context-aware programs accessible to lightweight devices.
Our work is inspired by three parallel trends in modern
computing: the ubiquity of lightweight devices such as
cellphones and PDAs, the rise of computation-and-data-
intensive programs in areas of ubiquitous computing, aug-
mented/virtual reality, machine learning, and graphics, and
the rise of cloud computing. While context-aware applica-
tions offer a unique and exciting way to integrate computer

Figure 1. The workspace stores data that is too large to
hold on the lightweight device.

programs with real life, users are often hampered by bulky
equipment [1, 2]. Lightweight devices make it easy for a
user to move around while using the device, without being
hampered by bulky equipment. And the rise of cloud com-
puting is making it easy to access powerful computational
resources from anywhere, while at the same time creating
challenging new models of how devices access both data
and resources [3].

We look at context-aware applications as presenting a new
model for how data is sent between a client and server, and
investigate the challenges presented by this new model. In
the traditional client-server model, the client will usually
request a specific piece of data from the server (e.g. a web-
page, image, or multimedia file), and the server will send
the client that specific item. In the new model presented by
these applications, the client will send the server a location
that the user is interested in, and the server will send back
a large amount of information about the area surrounding
that location. The user can then interactively explore this
data once it is stored on the client, and the client will peri-
odically send the user’s new location to the server.

Previously, the idea of sending surrounding data has been



used as a optimization for slow data transfers, i.e., pre-
fetching surrounding rows in a database. In our new model,
we see two things which make this new, and present new
challenges. The first is the nature of the data: a typical
context-aware application may send vast amounts of very
detailed multimedia data to the client. The second is the
nature of the user’s exploration: users physically explore
a three-dimensional environment in a non-linear fashion.
The amount of data transferred requires significant stor-
age capacity on the device. The combination of non-linear
data retrieval by the user and the nature of the applica-
tions means that the client device must also do a significant
amount of on-demand rendering of the three-dimensional
map data, putting high demands on both its video card and
CPU.

Moving applications to a server within the cloud in a thin-
client fashion induces large delays due to network latency.
To solve this problem, we propose a new system architec-
ture whose key feature is the addition of a “workspace” as a
low-latency (relative to the client) intermediary between a
client and server(s). A workspace provides a set of middle-
ware utilities designed to exploit local resources, and pro-
vide specific functions such as rendering of graphics, pre-
fetching of data, and combining data from different servers.
Figure 1 illustrates how the workspace fits in to this new
data model.

My thesis is that a proximal workspace architecture (as
describe above) will provide significantly improved user-
perceived performance for thin clients running context-
aware applications that are highly-interactive and compu-
tation/data intensive.

The rest of this paper is organized as follows. In Section
2, we present our workspace-based architecture. In Section
3, we discuss current and future work. In Section 4, we
conclude.

2. THE PROXIMAL WORKSPACE ARCHI-
TECTURE

A Proximal Workspace Architecture is comprised of three
parts, illustrated in Figure 2: (1) terminals, the sensors and
devices that the user actually interacts with and that provide
data about the users location; (2) the world, consisting of
the users home and/or work computers, web servers, game
servers, and anything else the user interacts with through
the internet; and (3) the workspace, a temporary computing
session running on computational resources very close to
the terminals, capable of extending functionality of both
terminals and the world. We now describe these classes of
components in more detail.

Figure 2. The system introduces a workspace between
the client and servers.

Terminals consist of everything worn or carried by the user
of a context-aware application.They are used for input and
output. Input can be specific user actions, equivalent to
mouse movements and key presses, or it can be informa-
tion from sensors such as video cameras, accelerometers,
GPS units, thermometers, etc. The terminals may include
a hub for local communication and coordination. A set of
terminals could consist of a PDA with an integrated GPS
and camera, with a set of display glasses worn by the user
plugged into it. Terminals form a component similar to the
client in traditional thin client systems. Terminals are not
required to be capable of anything more than capturing in-
put, displaying output and communicating with the rest of
the system. Terminals are expected to be in the system for
long periods of time and persist over different workspace
sessions.

The world is the set of servers that communicate with the
rest of the system through the internet. These will be the
resource servers for the application. These can include a
reference website the user is visiting for the first time, or
a system server with which they are in semi-constant con-
tact. All persistent state is stored within the world. We
make no assumptions about the latency between the termi-
nals and any given server within the world. Some parts
of the world may be provided by others and contain large
numbers of factors we cannot control. How the world in-
teracts with the rest of the system can have a large impact
on system performance and user experience. How long a
part of the world remains in the system can very from sec-
onds to decades, and parts can remain consist over different
workspace sessions.

Within the workspace there exists a set of middleware util-
ities that are designed to exploit local resources. These
utilities are designed for specific functions, such as render-
ing of graphics, pre-fetching of data, and combining data
from different servers. More generally, the workspace is
designed to run any subset of activities that cannot be run
on the client due to computation speed or storage size, and
cannot be run on a server due to network latency. We aim
for as much reuse between different applications as pos-



sible from these utilities. We define a workspace server
as the machine the workspaces run on, and a workspace
session as an individual instance of a workspace interact-
ing with a single set of terminals on a specific workspace
server.

3. CURRENT AND FUTURE WORK

We are currently working on adapting Google Earth An-
cient Rome 3D to run under this system architecture, with
the goal of the user being able to intuitively navigate
through renderings of Ancient Rome in video glasses, with-
out being hampered by any bulky equipment. The user
interactively explores a rendering of ancient Rome, either
with a keyboard and mouse or with a more sophisticated
input device, and while they explore the Google Server pe-
riodically sends a very large amount of multimedia data de-
scribing the area they are exploring to the client, which then
renders it on a frame-by-frame basis. This puts two bur-
dens on the client: it must be able to store the vast amounts
of data being sent, and it must be able to quickly render a
complex scene.

In adapting Ancient Rome 3D to our system architec-
ture, we must consider both where parts of the application
should be distributed, and what utilities must be created to
aid the distribution. The user explores Google Earth using
the Space Navigator, a joystick like device that records both
rotation and pressure around the x, y and z axes [5]. Since
the Google Earth application cannot meet real time perfor-
mance demands while running on the netbook, we move
it to the workspace. Once Google Earth is running on the
work space, we must create utilities to forward input from
the netbook to Google Earth, and forward the display up-
dates from the workspace server to the netbook. In order to
forward the display, we use TightVNC [6]. In order to for-
ward input from the Space Navigator, we run a program on
the netbook which forwards the raw input from the Space
Navigator to the workspace server, where it is then aggre-
gated, translated into units appropriate for Google Earth,
and sent to the Google Earth application via API calls.

By adapting Google Earth Ancient Rome to the Proximal
Workspace architecture, we allow users to use the appli-
cation on a lightweight netbook, something that it would
be impossible to do running the application natively. Be-
cause of the low latency connection between the workspace
server and the terminals, the performance of the application
is quite good, with no lag between the display of frames.

Our work with Google Earth Ancient Rome has lead us to
focus on the issues of how to best forward and transform
I/O device information. As such, we are currently investi-

gating the best way to handle I/O information with regards
to the additional latency added by the network, with the
goal of being as transparent to applications as possible.

4. CONCLUSIONS

We have presented a new architecture to support context-
aware applications that are highly computationally inten-
sive and that are accessed via lightweight devices, but that
are too lightweight to support their actual execution. As
these applications are highly interactive, it is imperative
that they still execute “near” the user. Consequently, a dy-
namically allocated workspace that provides computational
and memory resources, that is proximal to the user, and that
offers a library of utilities that are pertinent to the “context-
aware data model,” is the novelty of our design.

In addition to building individual utilities for this architec-
ture, our current work is to also explore how to best design
the system as a whole. Moving computation from the client
to the workspace adds new issues that must be solved. For
example, the workspace must be able to correctly save per-
sistent data at the end of a session with the client, which
means it must have a mechanism for figuring out which
data should be saved, and which server in the world to save
it to. There must be a mechanism for the client to discover
and be assigned to a workspace server which is capable of
handling its applications. Multiple client sessions within
the same workspace machine raises issues of security, pri-
vacy, and QoS scheduling. We will leverage existing work
when possible when exploring these issues.

REFERENCES

[1] W. Broll, I. Lindt, I. Herbst, J. Ohlenburg, A. Braun and
R. Wetzel, “Toward next-gen mobile AR games,” IEEE Com-
puter Graphics and Applications, pp. 40–48, 2008.

[2] A. Cheok, K. Goh, W. Liu, F. Farbiz, S. Fong, S. Teo, Y. Li
and X. Yang, “Human Pacman: a mobile, wide-area enter-
tainment system based on physical, social, and ubiquitous
computing,” Personal and Ubiquitous Computing, Vol. 8, No.
2 pp. 71–81, 2004.

[3] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis and A. Vakali,
“Cloud Computing: Distributed Internet Computing for IT
and Scientific Research,” IEEE Internet Computing, Vol. 13,
No. 5 pp. 10–13, 2009.

[4] C. Taylor and J. Pasquale, “Improving VNC Performance,”
Computing Science Technical Report CS2009-0943, Univer-
sity of California, San Diego, Computer Science and Engi-
neering Department, May 2009, Submitted for publication.

[5] “3d Connexion Space Navigator,” URL http://www.
3dconnexion.com/.

[6] “Tight VNC,” URL http://www.tightvnc.com/.


