
Proximal Workspace and VNC

Cynthia Taylor, Taurin Tan-atichat, Joe Pasquale, Amin Vahdat
University of California, San Diego

  Introduction
  Workspace
  The Problem with Supporting Video
  Server Push
  Client Pull
  Virtual Network Computing
  Defining Performance

  Adding a Message Accelerator
  Experimental Design & Results
  Conclusion

2

Workspace Architecture

3

Workspace Utilities

4

The Problem with Supporting Video
  Video is hard for Thin Client Systems

  Frequent updates
  Many pixel changes per update
  All server generated
  Becomes drastically worse over high latency

5

Server Push

  X-Windows is a server push system

Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans.
Graph., 5(2):79-109, 1986.

client server
update

Server Push

6

Client-Pull

  VNC is a client-pull system.

T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A Hopper.
Virtual network computing. Internet Computing, 2(1):33-38, 1998."

client server

update

request

Client Pull

7

Virtual Network Computing
  VNC is a widely-used thin client system.
  It is cross-platform and has several available open-

source implementations.
  It was developed by Tristan Richardson at the Olivetti

Research Lab.

T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A Hopper. Virtual
network computing. Internet Computing, 2(1):33-38, 1998. "

Tristan Richardson. The RFB Protocol. Technical report, RealVNC Ltd,
2007. "

8

How VNC Works

  It runs at the application layer and reads updates from
the framebuffer.

VNC server

application

VNC
client

frame
buffer requests

updates

internet

9

Defining Performance

client server
request

client server

update
client server

client server

2. Client waits

3. Server sends update 4. Client processes update

1. Client requests new update

10

  Introduction
  Adding a Message Accelerator

  VNC with High Network Latency
  The Message Accelerator and VNC
  Pipelining Updates
  Message Accelerator with High Network Latency

  Experimental Design & Results
  Conclusion

11

VNC with High Network Latency

  Client sends request - 200 ms
  Server sends update - 200 ms

Update Rate = 2.5 updates/second
More Generally, Update Rate = 1/RTT

server client
200 ms

12

Two Approaches
  Adding a proxy, unmodified client and server
  Modify the client

13

The Message Accelerator and VNC

  The Message Accelerator sends requests to the server at the
rate the client is processing them, and quickly receives updates
from the server.

  This lets the Message Accelerator adjust for latency between
the client and server

VNC
server VNC

client

requests

updates

internet

Message
Accelerator slow fast

 requests

updates

14

Pipelining Updates

  The proxy sends requests to the client at the rate the client is
processing, without waiting for a request.

VNC
server VNC

client

requests

updates

internet

Message
Accelerator slow fast

 requests

updates

15

Message Accelerator - High Network
Latency

  Client reads pipelined update from proxy - 75 ms

Update Rate = 13 updates/sec

server
client

Message
Accelerator

200 ms

update every 75 ms

16

  Introduction
  Adding a Message Accelerator
  Experimental Design & Results
  Conclusion

17

Experimental Design

  We use NetEm to add network delays to both client
and server to simulate network latency

n
e
t
e
m VNC

server

video
application VNC

client

n
e
t
e
m Mess

Acc

18

Results: Message Accelerator
Outperforms Unmodified System

19

Modify the Client (Taurin Tan-atichat)
  Goal: Have a request arrive just after the frame buffer (at

server) is updated
  Have client send pre-requests

  too many requests could overload network or server
  too few results in suboptimal performance

20

Our Approach: VNC-HL
  Send a pre-request periodically

  PRP is pre-request period

  Client: upon receiving an update and processing it
(including rendering), send a request and set timer to PRP

  If timer expires, send another request (and set timer)
  If update is received, process/render, and then send

request and reset timer

21

Pipelining of Requests

22

Goal
  Reach a steady state where enough frame buffer requests

have been injected into the system that not many more
additional requests are needed

23

Implementation
  Modified RealVNC for Unix
  Very simple change to request loop

24

VNC vs. VNC-HL

25

FPS Improves over Time

26

Conclusions

  We can improve VNC performance by
  having a Message Accelerator mediate the update rate

over network latency
  modifying the client to aggressively send pre-requests

  By using the Message Accelerator, we do not have to
modify an existing code, avoiding issues of parallel
code maintenance and source code availability

  In the VNC-HL approach, we achieved high
performance by adding a very simple modification to
the client

27

