
Patterns for Decoupling Data Structures and Algorithms

Dung (“ Zung”) Nguyen
Dept. of Mathematics/Computer Science

Pepperdine University
Malibu, CA 90263

dnguyen@pepperdine.edu

Stephen B. Wong
Computer Science Program

Oberlin College
Oberlin, OH 44074

stephen.wong@oberlin.edu

Abstract

In order to build a data structure that is extensible and
reusable, it is necessary to decouple the intrinsic and
primitive behavior of the structure from the application
specific behavior that manipulates it. To illustrate such a
construction, this paper proposes a uniform object-oriented
structural pattern for recursive data structures, and shows
how external algorithms can be added without rewriting
any code using the visitor design pattern. By presenting
data structures in this manner, we can more effectively
teach students about recursion, abstraction, design, and
good software engineering practices.

1 Introduction

It is common practice to present data structures to students
in some encapsulated form with a predefined set of
operations. Unfortunately, even on common structures
such as lists and trees, the set of operations differs from
text to text. This arises because of the lack of delineation
between the intrinsic and primitive behavior of the
structure itself and the more complex behavior needed for a
specific application. It thus becomes difficult for students
to understand the proper abstraction of any particular
structure.

The failure to decouple primitive and non-primitive
operations also causes reusability and extensibility
problems. The weakness in bundling a data structure with a
predefined set of operations is that it presents a static non-
extensible interface to the client that cannot handle
unforeseen future requirements. Reusability and
extensibility are more than just aesthetic issues; in the real
world, they are driven by powerful practical and economic
considerations. Computer science students should be
conditioned to design code with the knowledge that it will

be modified many times. In particular is the need for the
ability to add features after the software has been delivered.
An object-oriented approach to address this issue proceeds
as follows.

 i. Identify the variant and the invariant behaviors.
 ii. Encapsulate the invariant behavior into a class.
 iii. Add hooks to this class to define communication

protocols with other classes.
 iv. Encapsulate the variant behaviors into classes that

comply with the above protocols.

The result is a flexible system of co-operating objects that
is not only reusable and extensible, but also easy to
understand and maintain.

This paper illustrates the above process by applying it to
the design of recursive data structures and their algorithms.
Here, the invariant is the intrinsic and primitive behavior of
a structure, and the variants are the multitude of extrinsic
and non-primitive algorithms that manipulate it. The
recursive structures are implemented using the state design
pattern [2] and encapsulated with a minimal and complete
set of primitive structural operations. The visitor design
pattern [1] is then applied to define the protocols for
operating on the structure. Algorithms are simply
implemented as visitors that can be sent to the appropriate
structures for execution. A visitor only interacts with a
structure via the structure’s public interface. This approach
turns a data structure into a (miniature) framework where
control is inverted: one hands an algorithm to the structure
to be executed instead of handing a structure to an
algorithm to perform a computation. The structure is
capable of carrying out any conforming algorithm, past,
present, or future. This is how reusability and extensibility
is achieved.

This paper also maintains that presenting data structures
and algorithms in this manner makes it easier for students
to implement data structures and develop algorithms, in
particular recursion. It promotes thinking at the proper
levels of abstraction, and exposes students to good design
and software engineering practices.

Section 2 introduces the combination of state and visitor
patterns for a linear recursive structure. Section 3
compares the binary tree structure with the linear recursive

structure, and shows, abstractly, they are essentially the
same. Section 4 describes this combination of state and
visitor patterns with respect to general recursive structures
and algorithms, and discusses its pedagogical implications.
Section 5 demonstrates how the design easily
accommodates the more complicated example of a binary
search tree structure.

2 Linear Recursive Structure

A linear recursive structure (LRS) can be empty or non-
empty. If it is empty, it contains no object. Otherwise, it
contains an object called first, and a LRS object called rest.
We model a LRS as a class in Java as follows.

public class LRStruct {
 public LRStruct() {…}
 public final Object getFirst () {…}
 public final void setFirst (Object dat) {…}
 public final LRStruct getRest () {…}
 public final void setRest (LRStruct tail) {…}
 public final void insertAsFirst (Object dat) {…}
 public final Object removeFirst () {…}
// other attributes and methods… }

The constructor is to initialize a LRS to the empty state.
The final keyword is used to express the fact that a method
is an invariant. The get/set methods are for accessing and
replacing the two different components (first and rest) of
the LRS. insertAsFirst() corresponds to “cons” in Lisp. It
allows the LRS to change state from empty to non-empty.
removeFirst() is the (left) inverse of insertAsFirst(). It
provides a way for the LRS to change state from non-
empty to empty. This pair of methods defines the state
transitions of a LRS. These seven methods expose the
structure of a LRS to the client and constitute the pure
structural behavior of a LRS. They form a minimal and
complete set of methods for manipulating a LRS. Using
them, one can create an empty LRS, store data in it, and
remove/retrieve data from it at will.

To endow a LRS the capability to perform an open-ended
number of algorithms, we apply the visitor design pattern
[1] by adding the following method to LRStruct:

public final Object accept (ILRSVisitor v, Object input),

where ILRSVisitor is an interface defined as

public interface ILRSVisitor {
 Object visitEmptyStruct (LRStruct host, Object input);
 Object visitNonEmptyStruct (LRStruct host, Object input);}

The visitor pattern decouples the structure from the
extrinsic algorithms that operate on the structure. The
pattern works as if a LRStruct announces to the outside
world the following protocol:
“ If you want me to execute your algorithm, encapsulate it
into an object of type ILRSVisitor, hand it to me together
with its input object as parameters for my accept(). I will

send your algorithm object the appropriate message for it to
perform its task, and return you the result.
visitEmptyStruct() should be the part of the algorithm that
deals with the case where I am empty.
visitNonEmptyStruct() should be the part of the algorithm
that deals with the case where I am not empty.”

Figure 1 depicts the above design in UML (Unified
Modeling Language) notation. In this pattern, LRStruct is
called the host, LRStruct.accept() is called the hook to the
host, and all concrete implementations of ILRSVisitor are
called visitors. A visitor interacts with the host only via the
host’s structural behavior (public interface), and need not
know how the host is implemented. The host intrinsically
knows its own state, and is thus capable of making the
appropriate callback on the visitor’s method.

How the host invokes the callback depends on how it is
implemented. Nguyen [2] showed a representation of
recursive structures using the state design pattern. In this
particular implementation, an abstract class, ALRSNode,
represents the state of a LRStruct. Two concrete subclasses
of ALRSNode, NullLRSNode and NonNullLRSNode,
represent the empty and non-empty states, respectively.

Figure 1: Linear recursive structure using state and visitor
patterns.

NullLRSNode

$Singleton() : NullLRSNode

«concrete state, singleton»

{null linear recursive structure node}

LRStruct

+LRStruct()
+getFirst() : Object
+setFirst(dat: Object) : void
+getRest() : LRStruct
+setRest(tail: LRStruct) : void
+insertAsFirst(dat: Object) : void
+removeFirst() : Object
+accept(v: ILRVisitor, input: Object) : Object

{linear recursive structure}

«host»

NonNullLRSNode

-_dat: Object

NonNullLRSNode(dat: Object)

{non null linear recursive structure node}

«concrete state»

_tail

ALRSNode

accept(v: ILRVisitor, input: Object, owner: LRStruct) : Object

{abstract linear recursive structure node}

«abstract state»

_head

ILRSVisitor

+visitEmptyStruct(host: LRStruct, input: Object) : Object
+visitNonEmptyStruct(host: LRStruct, input: Object) : Object

{linear recursive structure visitor}

« visitor interface»

«uses»

accept(v : ILRVisitor, input: Object, owner: LRStruct) : Object
{ return v.visitEmptyStruct(host, input); }

LengthVisitor

«concrete visitor»

RemoveNthVisitor

«concrete visitor»

OtherVisitor

«concrete visitor»

accept(v : ILRVisitor, input: Object, owner: LRStruct) : Object
{ return v.visitNonEmptyStruct(host,input); }

LRStruct maintains a reference to a ALRSNode object,
say _head, and forwards all method calls to _head, in
particular, the call to accept(). At run time, _head can be
a NullLRSNode or a NonNullLRSNode. If it is a
NullLRSNode, it calls visitEmptyStruct(), otherwise it
calls visitNonEmptyStruct().

In Figure 1, LengthVisitor is the algorithm to compute the
length of a LRStruct. OtherVisitor represents any other
algorithm operating on LRStruct. RemoveNthVisitor is
an example of a concrete implementation of ILRSVisitor.
Its task to remove the nth element from a LRS. It is defined
as follows.

public class RemoveNthVisitor implements ILRSVisitor {
 public Object visitEmptyStruct (LRStruct host, Object input) {
 return null; // the empty structure has no element. }

 public Object visitNonEmptyStruct (LRStruct host, Object input) {
 int n = ((Integer) input).intValue();
 if (n < 0) return null; // there is no such n-th element.
 else if (0 == n) return host.removeFirst();
 else return (host.getRest()).accept(this, new Integer(n-1)); }}

Here, the RemoveNthVisitor class knows as a pre-
condition the parameter input is of type Integer and can
safely perform a type cast on input. RemoveNthVisitor
accomplishes its task strictly through the public interface of
LRStruct. Removing a node is an extrinsic operation. The
recursive call, host.getRest().accept(), is easier to
explain to students than the traditional recursive function
calls. It is straightforward, clear and unambiguous because
the host’s rest is simply another LRStruct.

What we have is a framework for reusing a LRS. Here, the
LRS is the unchanging entity from application to
application (or over time). It is the particular algorithm
used on the LRS that changes. The structure “drives” the
algorithm and not the other way around. Presenting the
LRS this way helps students focus on learning about the
structure per se and appreciate what the abstraction of the
structure is about. Building algorithms as separate entities
more closely mimics the way that algorithms are discussed,
thus is more “natural” and easier to understand. This is
particularly true with recursive algorithms. To think about
recursion is to think about the pattern of the base case (the
empty case) vs. the non-base case (the non-empty case).
The visitor interface not only provides students a clear
picture of this pattern, but also distributes the code
complexity over separate and independent methods,
thereby simplifying the code, and making the overall
complexity more manageable.

3 Binary Tree Structure

The above combination of state and visitor patterns can
also be used to implement the binary tree structure (BiTS).
A BiTS can be empty or non-empty. If it is empty, it
contains no object. Otherwise, it contains an object called

root, and a BiTS object called left subtree, and a distinct
BiTS object called right subtree. This abstract definition of
a BiTS is quite similar to that of a LRS. As in the case for
a LRS, the class model for a BiTS consists of public
methods that reflect the abstract view of the structure, and
can be implemented using the state pattern [2].

public class BiTStruct {
 public BiTStruct () {…}
 public final Object getRootDat() {…}
 public final void setRootDat(Object dat) {…}
 public final BiTStruct getLeft() { }
 public final void setLeft(BiTStruct t) {…}
 public final BiTStruct getRight() {…}
 public final void setRight(BiTStruct t) {…}
 public final void attachAsRoot(Object dat) {…}
 public final Object removeRoot() {…}
 public final Object accept(IBiTSVisiitor v, Object input) {…}
// other hidden methods…}

If the target BiTStruct is empty, attachAsRoot(dat) will
change its state to non-empty, containing dat as the root,
else nothing changes. removeRoot() changes the state of
the target BiTStruct to empty. This pair of methods
defines the state transitions of a BiTStruct. accept(), the
visitor hook into the BiTStruct is identical to that of a
LRStruct, save the appropriate change in the visitor type.

The visitor interface, IBiTSVisitor, is the same as that of a
LRSVisitor, save the obvious change in the host type.

public interface IBiTSVisitor {
 public Object visitEmptyStruct (BiTStruct host, Object input);
 public Object visitNonEmptyStruct (BiTStruct host, Object input);}

Since both the BiTS and the LRS share the same state-
visitor pattern, their underlying code is all but identical.
For students, this emphasizes the abstract notions of
recursive structures and their respective algorithms instead
of confusing them with mountains of seemingly dissimilar
code. To illustrate code structure similarity, we implement
an algorithm, RemoveNMthVisitor, to remove a node
from a BiTS, and compare it with the algorithm
RemoveNthVisitor for a LRStruct.

There are many schemes for indexing the nodes of a binary
tree, all of which are extrinsic to the tree structure. We use
the following scheme described in [3]. A node’s index
consists of a pair of integers, (n, m), where

� n denotes the depth of the node, and
� m is an integer where each bit starting from the least

significant bit denotes whether a traversal to the right
(1) or left (0) branch was taken to arrive at the node.

public class RemoveNMthVisitor implements IBiTSVisitor {
 public Object visitEmptyStruct (BiTStruct host, Object input) {
 return null; }
 public final Object visitNonEmptyStruct (BiTStruct host,

 Object input) {
 BiTSIndex ix = (BiTSIndex) input;
 if (ix.n < 0) return null;

 else if (0 == ix.n) {
 if (0 == ix.m) return host.removeRoot();
 else return null; }
 else {
 if (1 == (ix.m&1)) return host.getRight().accept(this,

new BiTSIndex(ix.n-1, ix.m/2));
 else return host.getLeft().accept(this,

new BiTSIndex(ix.n-1, ix.m/2)); }
 }}

We see that since the depth transversal of a tree is the same
as that through a linear structure, the code involving n is
identical to the LRS code. The change to a binary topology
results in a conditional statement, and the remaining returns
and recursive call(s) are essentially identical as well.
(Note: BiTSIndex is a class that holds both n and m.)

4 Recursive Structure Pattern

Traditionally, part of the code in a recursive algorithm is
devoted to distinguishing between the base and the non-
base cases. Students are often confused as they try to wend
their way through the maze of conditional statements in
many procedurally based algorithms. As illustrated in the
preceding sections, the coding can be greatly simplified by
decoupling the LRS and BiTS recursive structures from
their respective extrinsic algorithms using a combination of
state and visitor patterns. In general, this state-visitor
pattern can be applied to any type recursive structure and
its corresponding algorithms as shown in Figure 2. The
public interfaces of a BiTS and of a LRS look very similar.
They are special cases of a more general recursive structure
pattern. In the design of recursive data structures and the
development of their respective algorithms, this pattern
enables the student to concentrate on the three building
blocks of recursion, the base case, the non-base case, and
the recursive call, and not be distracted by the details of
control structures. This helps reduce confusion.

As shown in Figure 2, a recursive structure (RStruct) will
have one or more base states, and one or more non-base
states. In each of the states, the structure is composed of
zero or one piece of data and zero or more children
RStruct. Its public structural behavior consists of get/set
methods to access the objects of its composition, and a
changeStateTo() method for state transitions. This
structural behavior is intrinsic to RStruct and can be
implemented using the state pattern [2].

Because it is the recursive property of RStruct that gives
rise to recursive algorithms, the visitor pattern prescribes
encapsulating the algorithms on RStruct into classes
whose common public interface, IRSVisitor, consists of
methods that mirror the states (but not the behavior) of
RStruct. RStruct.accept() is a hook method used to
execute any IRSVisitor. At any point in time, RStruct
knows what state it is in, and thus can drive the visiting
algorithm by invoking the appropriate method call to
IRSVisitor. The decision of when to call the various cases

of an algorithm is defined only once, at the time when
RStruct is designed, not every time a new algorithm is
written as is done traditionally.

The variant behaviors of a system are built upon the
invariant behaviors. Isolating the invariant behaviors and
encapsulating them into the structure provides global and
uniform access to them. As a result, the code for the
variant behaviors is simplified, more easily understandable,
and more robust. This is a powerful example to students of
the advantages of isolating and properly encapsulating the
invariant behaviors of a system.

Reusability is achieved in both the data structure as well as
the variant behaviors. All usages of a particular kind of
data structure are based on the invariant behavior of that
structure. Since the data structure object encapsulates its
invariant behaviors, it is usable in any situation calling for
it. Visitors are reusable because they can work with any
instance of a data structure that presents the interface of the
data structure for which they were built. Extensibility is
achieved by the generality of the visitor-host protocol. A
new visitor will work with a data structure as long as it
presents methods for all the different states of the structure.

5 Binary Search Tree

A binary search tree (BST) can be built by reusing
BiTStruct without modification and extending it with

Figure 2: Generalized recursive structure using state and
visitor patterns.

: :

RStruct
{recursive structure}

«host»

+RStruct()
+getRootDat() : Object
+setRootDat(dat: Object) : void
+getChild1() : RStruct
+setChild1(rs: RStruct) : void
+getChild*() : RStruct
+setChild*(rs: RStruct) : void
+changeStateTo(stateIx: int, dat: Object) : Object
+accept(v: IRSVisitor, Object input) : Object ARSState

{abstract recursive structure state}

«abstract state»

_state

RSBaseState1

«concrete state»

RSNonBaseState1

«concrete state»

RSNonBaseStateN

«concrete state»

RSBaseStateM

«concrete state»

1..*_child

«interface»

IRSVisitor

+visitBaseCase1(host: RStruct, input: Object) : Object
+visitBaseCase...(host: RStruct, input: Object) : Object
+visitBaseCaseM(host: RStruct, input: Object) : Object
+visitNonBaseCase1(host: RStruct, input: Object) : Object
+visitNonBaseCase...(host: RStruct, input: Object) : Object
+visitNonBaseCaseN(host: RStruct, input: Object) : Object

{recursive structure visitor}

«uses»

RSVisitor1
«concrete visitor»

RSVisitorK
«concrete visitor». . .

additional variant behaviors. A BST contains keyed
objects whose keys are linearly ordered. So, suppose a
client wants a BST with the capability to store, remove, and
lookup data. We simply build a system consisting of (a) an
interface, IkeyedObject, to specify the ordering strategy
(b) concrete implementations of IBiTSVisitor for the store,
remove, and lookup algorithms based on an ordering
strategy (c) a BSTree class that wraps the BiTStruct to
hide unneeded methods, exposing only the hook to accept
visitors. Figure 3 shows the object model of the system.

Suppose at a later time, the client wants to add to her
BSTree the capability to check for emptiness, and to draw
the tree. We can reuse the check empty and draw visitors
that have already been built for BiTStruct but not used by
this client, and add them to the client’s system without
changing or breaking any of the existing code. This is
possible because these algorithms depend only on the
invariant behavior of the binary tree structure. This

demonstrates the reusability and extensibility of our
BiTStruct and IBiTSVisitor setup.

6 Conclusion

In this paper we have discussed how data structures and
their algorithms can be decoupled using the state and
visitor design patterns. The intrinsic, invariant behaviors
are encapsulated into an intelligent structure class. A hook
is added, and a communication protocol with extrinsic
algorithm classes is established. The extrinsic, variant
behaviors on the data structure are encapsulated into visitor
objects with a well-defined interface. The merits of this
technique include enhanced reusability and unlimited
extensibility. In addition, one finds that the coding is
pleasantly simple. This does not happen by accident, for
all the hard work has been shifted up front to formulate the
appropriate abstraction for the problem at hand. Object-
oriented design patterns provide ways to implement data
structures in such a way that the gap between the
abstraction and the computing model is minimal. Effective
use of polymorphism eliminates most control structures and
reduces code complexity. Data structures and algorithms
built as such are elegant in their simplicity, universal in
their applicability, and flexible in their extensibility.

It is important to teach students computer science concepts
using solid software engineering practices. We maintain
that using the state and visitor patterns to teach recursive
data structures and their algorithms has tremendous
benefits for students as well as technical value. The
patterns force them to properly abstract the concepts by
carefully delineating the variant and invariant behaviors.
The students can focus on the key concepts and behaviors
of the system without distraction from the complications of
program control. Our proposed implementation simplifies
their understanding of recursive data structures in general
by emphasizing the invariant behaviors common to all
types while discussing variant behaviors at their proper
level of abstraction. This unification of their concepts and
the resultant reduction in the traditional complexity of the
subject will enable students to better understand the
fundamentals of data structures and goals of quality
software engineering.

7 References

1. Gamma, E, Helm, R, Johnson, R, Vlissides, J. Design
Patterns, Elements Of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

2. Nguyen, D. Design Patterns for Data Structures.
SIGCSE Bulletin, 30, 1, March 1998, 336-340.

3. Wong, S. Structure-encoded Indexing Schemes for
Recursive Structures, pre-publication, Oberlin College,
stephen.wong@oberlin.edu.

Figure 3: Binary search tree using visitors and the binary
tree structure.

BiTStruct

+getRootDat() : Object
+setRootDat(dat: Object) : void
+getLeft() : BiTStruct
+getRight() : BiTStruct
+attachAsRoot(dat: Object) : void
+removeRoot() : Object
+accept(v: IBiTSVisitor, input: Object) : Object

{binary tree structure}

«adaptee»

BiTSDrawVisitor
{draw the tree}

«concrete visitor»

BSTInsertVisitor
{insert keyed data}

«concrete visitor»

BSTree

+BSTree()
+computeWith(v: IBiTSVisitor, input: Object) : Object

{binary search tree}

«host, adapter»

_struct

BSTRemoveVisitor
{remove keyed data}

«concrete visitor»

BiTSIsEmptyVisitor
{check for emptyness}

«concrete visitor»

BSTLookupVisitor
{look up keyed data}

«concrete visitor»

IKeyedObject
«interface»

+isLessThan(rhs: IKeyedObject) : boolean

IBiTSVisitor
{binary tree structure visitor}

«visitor interface»

+visitEmptyStruct(host : BiTStruct, input: Object) : Object
+visitNonEmptyStruct(host: BiTStruct, input: Object) : Object

«uses»

«uses»

computeWith(v: IBiTSVisitor, input: Object) : Object
{ return _struct.accept(v, input); }

