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Abstract - DLSim, a GUI-based digital logic simulation 

program developed by Richard Salter at Oberlin 

College, has been used for class demonstrations and 

homework exercises in the Computer Organization 

course at Oberlin for over ten years.  Until recently its 

use has been limited to the component of the course 

dealing with low-level logic design using gates and flip-

flops.  A new version, DLSim 3, extends those capabilities 

through the use of Java plug-ins, making it possible to 

use the software for digital design at higher levels of 

abstraction.  With DLSim 3, we are able to present the 

many levels of circuit design in a single environment, 

from low level combinational and sequential circuits 

through models of complete CPUs.  The purpose of this 

paper is to give an introduction to DLSim 3 and to 

describe how we have used it in the classroom, focusing 

particularly on CPU design. 

 

Index Terms – Circuit Simulation, Computer Organization, 

Digital Logic. 

INTRODUCTION 

Computer Organization is a standard course in Computer 

Science and Computer Engineering programs.  In Computer 

Science programs, which are geared toward software theory 

and design, it is often the only hardware-oriented course in 

the curriculum.  For this reason, it must cover a wide range 

of material, from low-level digital logic through CPU design 

at the register-transfer level, design and programming of 

instruction set architectures, and system-level design 

involving buses and I/O interfaces.  Although good software 

tools exist to assist in the study of each of these areas, there 

has not been a single tool which covers all of them. 

The result is that in a typical Computer Organization 

course, the student must learn the use of a new tool for each 

area being studied.  Just when the student becomes 

comfortable using, for example, a digital logic design tool, it 

is time to move on to learning to use an assembler or cache 

simulation program. 

Many excellent GUI-based logic simulation systems 

have been developed and are available for download, such as 

Logicsim [1], JLS [2], Digital Works 3.0 [3], and Logisim 

[4,5].  These systems are very useful for studying basic 

combinatorial and sequential circuits.  While they generally 

all provide some abstraction mechanism (“black boxes”) that 

permits circuit reuse, they are limited by their GUI based 

environments to relatively small models. 

DLSim 3 goes beyond these efforts through its 

innovative use of Java plug-ins.  A plug-in is a software 

module, written in Java, which is added to DLSim’s design 

platform and can be used as a component in more complex 

circuit designs.  The user can write Java modules that 

simulate higher-level logic components (i.e., memories, 

registers, ALUs) which supplement DLSim’s collection of 

built-in components.  The plug-in facility is built around an 

interface that describes what functions a plug-in must 

perform in order to be installed in the system, and an API of 

functions which support the writing of plug-ins.   

Plug-ins allow the simulator to scale up to whatever 

level of abstraction is appropriate in a course.  For example, 

at one stage in a course, students might be asked to design an 

ALU using only logic gates.  Later, when studying CPU 

design, the instructor might provide an ALU plug-in to be 

used as a component. 

In addition, plug-ins can perform I/O, either GUI-

oriented user interaction or file operations.  For example, we 

have written plug-ins which can load a microprogram from a 

file, store results of a simulation to a file, and provide an 

interactive keypad for a simulated calculator. 

The design philosophy behind DLSim was described by 

Salter and Donaldson in [6].  In this paper, we present an 

introduction to plug-ins and then describe how we have used 

DLSim to visually simulate the CPU designs presented in 

two of the leading Computer Organization textbooks, by 

Patterson and Hennessey [7] and Tanenbaum [8].  With 

these designs, we have been able to illustrate important CPU 

design concepts such as datapath construction (both 

conventional and pipelined) and control unit design (both 

hardwired and microprogrammed).  In addition, we describe 

several student projects which have been implemented using 

DLSim 3. 

PLUG-INS 

The power of DLSim 3 to model large-scale circuit 

components, such as RAM chips and CPUs, is achieved 

through plug-ins.  A plug-in is a Java class which represents 

a circuit component.  Every plug-in is a subclass of 

DLPlugIn, which gives it the basic structure it needs to fit 

into the DLSim 3 simulation engine. 

Every plug-in must specify at least some basic 

functionality by overriding methods in the base class: 

• the constructor must indicate the number of input and 

output pins of the plug-in 

• the evalState method defines the behavior of the plug-

in.  During a simulation, it is invoked whenever there is 

a change in state in any of the plug-in’s inputs. 
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These methods are part of DLSim 3’s plug-in API.  The 

API contains a variety of methods designed to assist plug-in 

writers, with capabilities such as 

• setting input and output size 

• getting input values 

• setting output values 

• pin grouping 

• conversion of pin values to and from decimal or 

hexadecimal representation 

 

By default, DLSim 3 displays a plug-in as a rectangle 

with inputs on the left and outputs on the right.  The 

programmer may, however, provide a customized view for 

the plug-in by writing a separate view class.  The plug-in 

view may 

• change the shape of the component 

• change the positioning of the input and output pins 

• use the component as a Java Swing Container holding 

Swing Components such as labels, text fields, etc. 

 

The CPU designs in Figures 1 and 2 illustrate several 

examples of plug-ins with customized views, such as the 

register file, input/output area, and ALU. 

IMPLEMENTATION OF MIPS 

We have implemented a simplified MIPS-architecture 

processor in DLSim 3.  The design follows the description of 

the MIPS processor by Patterson and Hennessy [7].  They 

present a detailed design for a processor which implements a 

subset of the MIPS instruction set.  This subset consists of a 

small but functionally complete handful of instructions (add 

and subtract, memory load and store, conditional branch).  

Figure 1 shows our implementation, which we have dubbed 

the MicroMIPS, as it appears in the display area of DLSim 3. 

I. Basic Implementation 

The Patterson and Hennessy implementation divides the 

execution of a single machine instruction into five steps:  

instruction fetch, instruction decode/register fetch, ALU 

execution, memory access, and register writeback.  To 

implement the processor in DLSim 3, we used the following 

plug-ins: 

1. Register.  The register plug-in represents a 32 bit 

register.  It is used in several places:  the program counter, 

latches for fetched registers, an ALU result register, and the 

LMD register which is used to hold the value loaded from 

memory in memory load instructions.  The register view 

shows the value currently stored in the register, displayed in 

hexadecimal. 

2. Register file.  The MIPS processor has a set of 32 

general purpose 32-bit registers.  The register file plug-in 

implements this register set.  The view presents a scrollable 

window which contains all 32 registers displayed in 

hexadecimal, as shown in Figure 1.  Note that the plug-in is 

a block with input and output pins.  A pin may represent a 

pin bundle interfacing to a multiline signal.  For example, 

the “Wr add” pin carries 5-bit register number; the “Wr 

data” pin carries a 32-bit data value.  The face of the plug-in 

is a Java Swing visual component which holds a set of GUI 

controls for interactive input and output. 

3. Memory.  The memory design represents a random-

access memory customized with the following parameters: 

• Size in bytes  

• Base address 

 

This makes it possible to use the same plug-in for both the 

instruction memory and the data memory, which are treated 

as separate components in the Patterson and Hennessy 

design.  Each memory component can be mapped into a 

different region of the processor's 32-bit address space. 

4. ALU.  The ALU plug-in accepts two 32-bit data 

inputs and a 4-bit function select input, and produces a 32-

bit data value and a zero flag. 

5. Multiplexer.  Multiplexers are important in the 

CPU design to allow the processor to choose between inputs 

at various stages of execution.  For example, the program 

counter’s input value must be selected from the current 

program counter incremented by 4 and a branch address.  

The second ALU input is selected from a register value and 

an immediate operand.  A simple plug-in selects one of two 

or more 32-bit inputs and produces a 32-bit output.  The 

selection bits are generated by the CPU’s control unit. 

A multiplexer, of course, has a simple logical structure 

which could easily be implemented at the gate level.  

However, connecting all of the wires for a 32-bit mux is 

rather cumbersome.  A plug-in is used here for convenience 

6. Control unit.  The hard-wired control unit generates 

control signals based on the current instruction.  These 

control signals include multiplexer selection bits, register- 

and memory-write flags, etc. 

7. Input/output console.  Although it is not part of the 

MIPS design presented by Patterson and Hennessy, we have 

added an input/output console to our implementation.  This 

makes it possible to write programs for the MIPS which 

perform interactive input and output.  The I/O console uses 

memory-mapped I/O to perform its functions.  It is written 

as a subclass of the memory plug-in, using the same pin 

interface, but with the following changes: 

• Reads and writes to the memory I/O locations are 

intercepted and used to trigger I/O operations. 

• A customized view provides input and output text areas 

for user interaction. 

II. Processor Versions 

Patterson and Hennessy describe several different 

implementations of the MIPS processor.  We have 

implemented both their single-cycle version and their five-

cycle version of the processor.  In the five-cycle version, 

each instruction cycle is divided into five discrete time 

periods, each one directed by a separate clock pulse.  We use 

a clock generator plug-in to take a single clock signal as 

input and generate a sequence of five distinct clock signals. 
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FIGURE 1 

THE MICROMIPS PROCESSOR 

 

Each clock signal causes a result value to be stored in an 

intermediate register, as follows: 

Clock 0: fetch the next instruction and store it in the 

instruction register. 

Clock 1: fetch register values from the register file. 

Clock 2: store the current ALU result in the ALU result 

register. 

Clock 3: store a value loaded from memory in the LMD 

register. 

Clock 4: write back a value from the ALU result register or 

the LMD register to the register file; store the next 

instruction address in the program counter. 

This version of the processor serves as the precursor to 

the pipelined version described below. 

For the single-cycle version of the processor, all of the 

registers used for intermediate values between stages are 

removed, leaving only the program counter as a control 

register.  Even the instruction register is eliminated.  When a 

clock tick occurs, the program counter is loaded.  This 

causes all of the processor actions to occur in combinational 

logic.  The next clock tick causes the current instruction’s 

results to be saved (i.e., register writeback and memory 

write) at the same time that the program counter is updated. 

For both of these versions of the processor, the same set 

of plug-ins is used.  They are simply connected differently.  

The instructor may choose to use both versions to 

demonstrate the differences between them and to visually 

show how each one works.  Another approach would be to 

use the processors as a homework exercise; for example, 

provide one version of the processor and ask students to 

convert it to the other version. 

III. MIPS with Pipelining 

We have also implemented a pipelined version of the MIPS 

processor in DLSim 3.  This version of the processor is 

based on the design presented by Patterson and Hennessy 

[1], constructed from the five-cycle version by inserting 

pipeline registers between stages and replacing the five-

cycle clock with a single clock which causes each stage to 

operate on each clock pulse. 

In class, the pipelined processor provides a dramatic 

illustration of how a pipeline works.  Each register has a 

view which displays the register contents, so when the clock 

is single-stepped manually, students can observe each 

instruction passing through all stages of the pipeline, 

accompanied by its associated data values.  When the clock 

is run at full speed, students can see a program run to 

completion with a significant speedup in comparison with 

the nonpipelined version of the processor. 
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FIGURE 2 

THE MIC-1 PROCESSOR 

 

Several types of homework exercise are suitable for use 

with the pipelined processor, such as: 

1. Converting from the five-cycle non-pipelined processor 

to the pipelined one.  This is a substantial exercise, so as a 

first step, it is advisable to perform the datapath and control 

modifications without any hazard detection or removal. 

2. Implementing forwarding.  Students can be given a 

pipelined version of the processor that does not implement 

forwarding.  This processor can run some programs, but will 

not run all programs correctly without explicitly inserting 

nop instructions in the program where data hazards would 

otherwise occur.  The assignment is then to implement one 

or more instances of forwarding.  Each type of forwarding 

will allow a greater number of programs to be executed 

without error.  An alternative approach would be to provide 

students with a version of the processor in which some of the 

forwarding cases are handled, and let them add the rest. 

3. Implementing stall cycles.  The Patterson and Hennessy 

design can handle all cases of data hazards through 

forwarding, except when a memory load instruction is 

followed immediately by an instruction which uses the 

loaded value.  In this case, a stall cycle (actually a nop 

instruction) must be inserted into the pipeline on the fly.  

The student exercise is to modify the design to detect and 

handle this hazard. 

IMPLEMENTATION OF MIC-1 

Tanenbaum [8] describes MIC-1, a microprogrammed CPU 

architecture which implements a subset of the Java virtual 

machine called IJVM. We have created a working model of 

this architecture in DLSim 3, shown in Figure 2. 

The Mic-1 architecture maintains a microprogrammed 

control unit to manage a 32-bit wide datapath. This datapath 

runs between a set of 10 registers and an ALU and shifter. 

The microcode also controls interaction between the main 

memory and two address/data register pairs, respectively 

providing access to the ISA-level bytecodes and to program 

data. 

The DLSim 3 model uses plug-ins to implement the 

following functional units:  

1. Microcode store and control unit.  On startup, this unit 

reads a file containing a microprogram implementing the 

IJVM interpreter. In each instruction cycle, it loads a new 

microinstruction into its microinstruction register and breaks 
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it down into appropriate control signals which are wired to 

the components of the datapath.  The plug-in view displays 

the current microinstruction and control signal values.  

2. The 10-element register file.  This unit contains 9 32-bit 

registers and 1 special-purpose 8-bit “MBR” register.  The 

latter serves as the instruction register for interpreting IJVM 

byte code.  Registers are labeled by their designated roles in 

the interpreter (e.g., SP: stack pointer; TOS: top-of-stack, 

etc.) or their roles as address (MAR, PC) or data (MDR, 

MBR) registers for memory operations.  Register content is 

displayed by the plug-in view.  

3. The main memory holding the IJVM program and data 

segments.  The main memory is segmented into a method 

area, a constant pool and a stack area, each of which is 

displayed in a text area in the plug-in view.  Reads and 

writes involving the two data segments interact with the 32-

bit memory address (MAR) and data (MDR) registers in the 

register file.  The method area is read-only and interacts with 

the PC address register and 8-bit MBR instruction register 

described above.  The main memory visually tracks IJVM 

program execution and stack operations.  The memory unit 

also contains a console for memory-mapped I/O, similar to 

the one described for the MIPS processor. 

4. The ALU and shifter. Control signals can select from as 

many as 16 useful ALU operations, including addition, 

subtraction, and standard logical operations (AND, OR and 

NOT). 

Other functions are implemented as subcircuits.  These 

include a clock sequencer and JMP unit used to implement 

conditional control at the microcode level, as described in 

Tanenbaum [8]. 

The system clock cycle is divided into three time 

periods.  The clock sequencer circuit generates three distinct 

pulses, respectively triggering the following operations: 

Clock 0: The microinstruction register is loaded with the 

next microinstruction. Control signals are activated for 

subsequent actions in the cycle. 

Clock 1: Registers are selected for gating onto the datapath.  

The ALU and shifter, using operations selected by control 

bits, process the selected register values.  Any required 

memory operations are initiated.  The value computed by the 

ALU and shifter is stored back in the register file. 

Clock 2: Completed memory operations are synchronized. 

Student exercises using this model fall into two 

categories. The first involves extending and experimenting 

with the microcode interpreter and its connection to the 

IJVM level; for example, we have assigned students the task 

of extending the microcode interpreter to implement several 

new IJVM instructions and to write an IJVM program to test 

them. The second involves direct manipulation of the 

simulated hardware. Students might be asked to replace 

ALU and shifter plug-ins with circuits built on the DLSim 

platform. (We have ourselves built an alternate 

implementation of Mic-1 in which this has been carried out.)  

Finally, Tanenbaum describes several extensions to the Mic-

1 architecture that could readily be applied to extend the 

DLSim model. 

STUDENT PROJECTS USING DLSIM 3 

The processor models described here are suitable for a wide 

variety of student design projects.  These may be assigned to 

the class as a whole, or as a term project where each student 

may choose his own project.  In this section we describe 

some projects which have been carried out by students at 

Oberlin. 

• Programmable Logic Array (PLA).  This project 

involved writing a plug-in to simulate a PLA.  The 

design was based on a PLA with 8 inputs, 50 and gates, 

and 6 outputs, but is parameterizable to any number of 

gates.  It was used to implement the control logic for the 

MicroMIPS processor described earlier. 

The PLA “program” is a text file containing binary 

data representing the state of each programmable fuse 

on the PLA.  The file can be loaded into the PLA 

through the DLSim 3 GUI.  The same approach could 

be used in developing plug-ins to represent other types 

of programmable logic devices, such as FPGAs. 

• Cache Memory.  It is common in Computer 

Organization courses to assign as a programming 

assignment the simulation of a cache memory, 

parameterized by factors such as size, associativity, and 

replacement policy.  Using DLSim 3, this project was 

written as a plug-in.  It incorporates the usual types of 

cache parameterization, such as size, block size, 

associativity, and replacement policy.  It has an 

interface which allows it to be inserted in the 

MicroMIPS CPU implementation between the main 

CPU circuit and its memory components.  It also 

collects statistics on cache hits and misses. 

To complete this project, it was necessary to write a 

program to simulate the basic operation of the cache 

and to interface it to the CPU so that it would actually 

work on real programs.  Thus it was a more complete 

project than simply writing a simulation program which 

reads a memory trace from a file. 

Using the cache plug-in in a CPU circuit does limit 

the scale of the simulations it can perform to programs 

written with the small instruction set of the MicroMIPS.  

To facilitate larger scale simulations, a TestGenerator 

plug-in was also written which reads a memory trace 

from a file and feeds it to the cache plug-in. 

• Calculator.  The calculator project involve the design 

of a hand calculator, backed by the MicroMIPS CPU.  

The design required addressing several issues: 

Design of a calculator plug-in with a view 

containing a display area and keypad. 

Design of an interface to the MicroMIPS processor, 

using memory-mapped I/O.  Each keystroke on the 

calculator keypad triggers an input operation on the 

CPU.  CPU output operations cause characters to be 

displayed on the calculator display. 

Software.  A program was written in MIPS 

assembly language to support the calculator.  It contains 

a polling loop which checks the status of the calculator.  

When a keystroke is available, it is read into memory 



Session T1A 

/09/$25.00 ©2009 IEEE  October 18 - 21, 2009, San Antonio, TX 

 39
th
 ASEE/IEEE Frontiers in Education Conference 

 T1A-6 

from the calculator’s data register.  A subroutine is then 

called to process the keystroke. 

OTHER APPLICATIONS OF DLSIM 3 

This paper has focused on the use of DLSim 3 at the 

processor design level.  It is a versatile tool, however, that 

can be used at every level of study in a Computer 

Organization course. 

1. Conventional Logic Circuit Design.  Without plug-ins, 

DLSim 3 can be used as a low-level logic design 

simulator.  The basic building blocks of gates and flip-

flops can be used to implement any combinational or 

sequential circuit.  Some projects of this type, which 

make use of DLSim 3’s card and chip abstractions, are 

described in [6]. 

Conventional circuit design projects can be given 

added impact by incorporating them into a CPU-level 

platform.  For example, a typical assignment at this 

level is to design an ALU at the gate level.  With 

DLSim 3, students could be given a working CPU with 

its ALU implemented as a plug-in.  Their assignment 

would be to replace the plug-in with a chip (using the 

identical pin interface) of their own design.  The full 

CPU could then be used as the test platform for the chip. 

Other CPU components, such as a register or 

multiplexer, could likewise be used as design exercises.  

The MicroMIPS control unit is simple enough to be 

used as an exercise, built either with gates or a PLA 

plug-in. 

2. Assembly Language Programming.  The MicroMIPS 

and Mic-1 platforms implemented in DLSim 3 are 

suitable for exercises in assembly language 

programming.  The simulated CPUs provide a test and 

execution platform for programs which have been 

translated into machine code by an assembler.  For the 

programs used in development of our MIPS 

implementation, we used the MARS assembler [9].  

MARS has its own GUI-based execution environment 

but also supports a non-GUI interface which translates 

an assembly language program into machine code in a 

text file which can be loaded into the DLSim 3 memory 

plug-in and then executed by the simulated processor. 

3. Higher-level System Design.  One of our goals is to 

write a plug-in to represent a complete CPU.  A variety 

of system design exercises could be constructed using 

this plug-in, including bus design (both data transfer and 

arbitration), multiprocessor design, and cache memory 

design.   

SUMMARY 

DLSim 3 is a highly versatile software tool designed for the 

design and simulation of digital logic circuits.  Through its 

use of software plug-ins, it is capable of simulating digital 

circuits of varying levels of complexity.  The examples 

presented in this paper demonstrate some of the ways that 

DLSim 3 can be used as a pedagogical aid in Computer 

Organization courses.  In particular, we have been successful 

in using it to simulate the CPU designs presented in the 

popular textbooks of Tanenbaum and Patterson and 

Hennessy, in order to demonstrate a variety of 

implementation techniques; for example, hard-wired control, 

microprogramming, and pipelining.  We intend to continue 

to expand our library of plug-ins and circuit designs, which 

are available, along with the DLSim 3 software, at our 

website www.dlsim.com. 
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