
Session T1A

/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX

 39
th
 ASEE/IEEE Frontiers in Education Conference

 T1A-1

Illustrating CPU Design Concepts with DLSim 3

John L. Donaldson, Richard M. Salter, Joseph Kramer-Miller, Serguei Egorov, and Akshat Singhal
Oberlin College, john.donaldson@oberlin.edu, rms@cs.oberlin.edu, joseph.kramer-miller@oberlin.edu,

serguei.egorov@oberlin.edu, akshat.singhal@oberlin.edu

Abstract - DLSim, a GUI-based digital logic simulation

program developed by Richard Salter at Oberlin

College, has been used for class demonstrations and

homework exercises in the Computer Organization

course at Oberlin for over ten years. Until recently its

use has been limited to the component of the course

dealing with low-level logic design using gates and flip-

flops. A new version, DLSim 3, extends those capabilities

through the use of Java plug-ins, making it possible to

use the software for digital design at higher levels of

abstraction. With DLSim 3, we are able to present the

many levels of circuit design in a single environment,

from low level combinational and sequential circuits

through models of complete CPUs. The purpose of this

paper is to give an introduction to DLSim 3 and to

describe how we have used it in the classroom, focusing

particularly on CPU design.

Index Terms – Circuit Simulation, Computer Organization,

Digital Logic.

INTRODUCTION

Computer Organization is a standard course in Computer

Science and Computer Engineering programs. In Computer

Science programs, which are geared toward software theory

and design, it is often the only hardware-oriented course in

the curriculum. For this reason, it must cover a wide range

of material, from low-level digital logic through CPU design

at the register-transfer level, design and programming of

instruction set architectures, and system-level design

involving buses and I/O interfaces. Although good software

tools exist to assist in the study of each of these areas, there

has not been a single tool which covers all of them.

The result is that in a typical Computer Organization

course, the student must learn the use of a new tool for each

area being studied. Just when the student becomes

comfortable using, for example, a digital logic design tool, it

is time to move on to learning to use an assembler or cache

simulation program.

Many excellent GUI-based logic simulation systems

have been developed and are available for download, such as

Logicsim [1], JLS [2], Digital Works 3.0 [3], and Logisim

[4,5]. These systems are very useful for studying basic

combinatorial and sequential circuits. While they generally

all provide some abstraction mechanism (“black boxes”) that

permits circuit reuse, they are limited by their GUI based

environments to relatively small models.

DLSim 3 goes beyond these efforts through its

innovative use of Java plug-ins. A plug-in is a software

module, written in Java, which is added to DLSim’s design

platform and can be used as a component in more complex

circuit designs. The user can write Java modules that

simulate higher-level logic components (i.e., memories,

registers, ALUs) which supplement DLSim’s collection of

built-in components. The plug-in facility is built around an

interface that describes what functions a plug-in must

perform in order to be installed in the system, and an API of

functions which support the writing of plug-ins.

Plug-ins allow the simulator to scale up to whatever

level of abstraction is appropriate in a course. For example,

at one stage in a course, students might be asked to design an

ALU using only logic gates. Later, when studying CPU

design, the instructor might provide an ALU plug-in to be

used as a component.

In addition, plug-ins can perform I/O, either GUI-

oriented user interaction or file operations. For example, we

have written plug-ins which can load a microprogram from a

file, store results of a simulation to a file, and provide an

interactive keypad for a simulated calculator.

The design philosophy behind DLSim was described by

Salter and Donaldson in [6]. In this paper, we present an

introduction to plug-ins and then describe how we have used

DLSim to visually simulate the CPU designs presented in

two of the leading Computer Organization textbooks, by

Patterson and Hennessey [7] and Tanenbaum [8]. With

these designs, we have been able to illustrate important CPU

design concepts such as datapath construction (both

conventional and pipelined) and control unit design (both

hardwired and microprogrammed). In addition, we describe

several student projects which have been implemented using

DLSim 3.

PLUG-INS

The power of DLSim 3 to model large-scale circuit

components, such as RAM chips and CPUs, is achieved

through plug-ins. A plug-in is a Java class which represents

a circuit component. Every plug-in is a subclass of

DLPlugIn, which gives it the basic structure it needs to fit

into the DLSim 3 simulation engine.

Every plug-in must specify at least some basic

functionality by overriding methods in the base class:

• the constructor must indicate the number of input and

output pins of the plug-in

• the evalState method defines the behavior of the plug-

in. During a simulation, it is invoked whenever there is

a change in state in any of the plug-in’s inputs.

Session T1A

/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX

 39
th
 ASEE/IEEE Frontiers in Education Conference

 T1A-2

These methods are part of DLSim 3’s plug-in API. The

API contains a variety of methods designed to assist plug-in

writers, with capabilities such as

• setting input and output size

• getting input values

• setting output values

• pin grouping

• conversion of pin values to and from decimal or

hexadecimal representation

By default, DLSim 3 displays a plug-in as a rectangle

with inputs on the left and outputs on the right. The

programmer may, however, provide a customized view for

the plug-in by writing a separate view class. The plug-in

view may

• change the shape of the component

• change the positioning of the input and output pins

• use the component as a Java Swing Container holding

Swing Components such as labels, text fields, etc.

The CPU designs in Figures 1 and 2 illustrate several

examples of plug-ins with customized views, such as the

register file, input/output area, and ALU.

IMPLEMENTATION OF MIPS

We have implemented a simplified MIPS-architecture

processor in DLSim 3. The design follows the description of

the MIPS processor by Patterson and Hennessy [7]. They

present a detailed design for a processor which implements a

subset of the MIPS instruction set. This subset consists of a

small but functionally complete handful of instructions (add

and subtract, memory load and store, conditional branch).

Figure 1 shows our implementation, which we have dubbed

the MicroMIPS, as it appears in the display area of DLSim 3.

I. Basic Implementation

The Patterson and Hennessy implementation divides the

execution of a single machine instruction into five steps:

instruction fetch, instruction decode/register fetch, ALU

execution, memory access, and register writeback. To

implement the processor in DLSim 3, we used the following

plug-ins:

1. Register. The register plug-in represents a 32 bit

register. It is used in several places: the program counter,

latches for fetched registers, an ALU result register, and the

LMD register which is used to hold the value loaded from

memory in memory load instructions. The register view

shows the value currently stored in the register, displayed in

hexadecimal.

2. Register file. The MIPS processor has a set of 32

general purpose 32-bit registers. The register file plug-in

implements this register set. The view presents a scrollable

window which contains all 32 registers displayed in

hexadecimal, as shown in Figure 1. Note that the plug-in is

a block with input and output pins. A pin may represent a

pin bundle interfacing to a multiline signal. For example,

the “Wr add” pin carries 5-bit register number; the “Wr

data” pin carries a 32-bit data value. The face of the plug-in

is a Java Swing visual component which holds a set of GUI

controls for interactive input and output.

3. Memory. The memory design represents a random-

access memory customized with the following parameters:

• Size in bytes

• Base address

This makes it possible to use the same plug-in for both the

instruction memory and the data memory, which are treated

as separate components in the Patterson and Hennessy

design. Each memory component can be mapped into a

different region of the processor's 32-bit address space.

4. ALU. The ALU plug-in accepts two 32-bit data

inputs and a 4-bit function select input, and produces a 32-

bit data value and a zero flag.

5. Multiplexer. Multiplexers are important in the

CPU design to allow the processor to choose between inputs

at various stages of execution. For example, the program

counter’s input value must be selected from the current

program counter incremented by 4 and a branch address.

The second ALU input is selected from a register value and

an immediate operand. A simple plug-in selects one of two

or more 32-bit inputs and produces a 32-bit output. The

selection bits are generated by the CPU’s control unit.

A multiplexer, of course, has a simple logical structure

which could easily be implemented at the gate level.

However, connecting all of the wires for a 32-bit mux is

rather cumbersome. A plug-in is used here for convenience

6. Control unit. The hard-wired control unit generates

control signals based on the current instruction. These

control signals include multiplexer selection bits, register-

and memory-write flags, etc.

7. Input/output console. Although it is not part of the

MIPS design presented by Patterson and Hennessy, we have

added an input/output console to our implementation. This

makes it possible to write programs for the MIPS which

perform interactive input and output. The I/O console uses

memory-mapped I/O to perform its functions. It is written

as a subclass of the memory plug-in, using the same pin

interface, but with the following changes:

• Reads and writes to the memory I/O locations are

intercepted and used to trigger I/O operations.

• A customized view provides input and output text areas

for user interaction.

II. Processor Versions

Patterson and Hennessy describe several different

implementations of the MIPS processor. We have

implemented both their single-cycle version and their five-

cycle version of the processor. In the five-cycle version,

each instruction cycle is divided into five discrete time

periods, each one directed by a separate clock pulse. We use

a clock generator plug-in to take a single clock signal as

input and generate a sequence of five distinct clock signals.

Session T1A

/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX

 39
th
 ASEE/IEEE Frontiers in Education Conference

 T1A-3

FIGURE 1

THE MICROMIPS PROCESSOR

Each clock signal causes a result value to be stored in an

intermediate register, as follows:

Clock 0: fetch the next instruction and store it in the

instruction register.

Clock 1: fetch register values from the register file.

Clock 2: store the current ALU result in the ALU result

register.

Clock 3: store a value loaded from memory in the LMD

register.

Clock 4: write back a value from the ALU result register or

the LMD register to the register file; store the next

instruction address in the program counter.

This version of the processor serves as the precursor to

the pipelined version described below.

For the single-cycle version of the processor, all of the

registers used for intermediate values between stages are

removed, leaving only the program counter as a control

register. Even the instruction register is eliminated. When a

clock tick occurs, the program counter is loaded. This

causes all of the processor actions to occur in combinational

logic. The next clock tick causes the current instruction’s

results to be saved (i.e., register writeback and memory

write) at the same time that the program counter is updated.

For both of these versions of the processor, the same set

of plug-ins is used. They are simply connected differently.

The instructor may choose to use both versions to

demonstrate the differences between them and to visually

show how each one works. Another approach would be to

use the processors as a homework exercise; for example,

provide one version of the processor and ask students to

convert it to the other version.

III. MIPS with Pipelining

We have also implemented a pipelined version of the MIPS

processor in DLSim 3. This version of the processor is

based on the design presented by Patterson and Hennessy

[1], constructed from the five-cycle version by inserting

pipeline registers between stages and replacing the five-

cycle clock with a single clock which causes each stage to

operate on each clock pulse.

In class, the pipelined processor provides a dramatic

illustration of how a pipeline works. Each register has a

view which displays the register contents, so when the clock

is single-stepped manually, students can observe each

instruction passing through all stages of the pipeline,

accompanied by its associated data values. When the clock

is run at full speed, students can see a program run to

completion with a significant speedup in comparison with

the nonpipelined version of the processor.

Session T1A

/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX

 39
th
 ASEE/IEEE Frontiers in Education Conference

 T1A-4

FIGURE 2

THE MIC-1 PROCESSOR

Several types of homework exercise are suitable for use

with the pipelined processor, such as:

1. Converting from the five-cycle non-pipelined processor

to the pipelined one. This is a substantial exercise, so as a

first step, it is advisable to perform the datapath and control

modifications without any hazard detection or removal.

2. Implementing forwarding. Students can be given a

pipelined version of the processor that does not implement

forwarding. This processor can run some programs, but will

not run all programs correctly without explicitly inserting

nop instructions in the program where data hazards would

otherwise occur. The assignment is then to implement one

or more instances of forwarding. Each type of forwarding

will allow a greater number of programs to be executed

without error. An alternative approach would be to provide

students with a version of the processor in which some of the

forwarding cases are handled, and let them add the rest.

3. Implementing stall cycles. The Patterson and Hennessy

design can handle all cases of data hazards through

forwarding, except when a memory load instruction is

followed immediately by an instruction which uses the

loaded value. In this case, a stall cycle (actually a nop

instruction) must be inserted into the pipeline on the fly.

The student exercise is to modify the design to detect and

handle this hazard.

IMPLEMENTATION OF MIC-1

Tanenbaum [8] describes MIC-1, a microprogrammed CPU

architecture which implements a subset of the Java virtual

machine called IJVM. We have created a working model of

this architecture in DLSim 3, shown in Figure 2.

The Mic-1 architecture maintains a microprogrammed

control unit to manage a 32-bit wide datapath. This datapath

runs between a set of 10 registers and an ALU and shifter.

The microcode also controls interaction between the main

memory and two address/data register pairs, respectively

providing access to the ISA-level bytecodes and to program

data.

The DLSim 3 model uses plug-ins to implement the

following functional units:

1. Microcode store and control unit. On startup, this unit

reads a file containing a microprogram implementing the

IJVM interpreter. In each instruction cycle, it loads a new

microinstruction into its microinstruction register and breaks

Session T1A

/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX

 39
th
 ASEE/IEEE Frontiers in Education Conference

 T1A-5

it down into appropriate control signals which are wired to

the components of the datapath. The plug-in view displays

the current microinstruction and control signal values.

2. The 10-element register file. This unit contains 9 32-bit

registers and 1 special-purpose 8-bit “MBR” register. The

latter serves as the instruction register for interpreting IJVM

byte code. Registers are labeled by their designated roles in

the interpreter (e.g., SP: stack pointer; TOS: top-of-stack,

etc.) or their roles as address (MAR, PC) or data (MDR,

MBR) registers for memory operations. Register content is

displayed by the plug-in view.

3. The main memory holding the IJVM program and data

segments. The main memory is segmented into a method

area, a constant pool and a stack area, each of which is

displayed in a text area in the plug-in view. Reads and

writes involving the two data segments interact with the 32-

bit memory address (MAR) and data (MDR) registers in the

register file. The method area is read-only and interacts with

the PC address register and 8-bit MBR instruction register

described above. The main memory visually tracks IJVM

program execution and stack operations. The memory unit

also contains a console for memory-mapped I/O, similar to

the one described for the MIPS processor.

4. The ALU and shifter. Control signals can select from as

many as 16 useful ALU operations, including addition,

subtraction, and standard logical operations (AND, OR and

NOT).

Other functions are implemented as subcircuits. These

include a clock sequencer and JMP unit used to implement

conditional control at the microcode level, as described in

Tanenbaum [8].

The system clock cycle is divided into three time

periods. The clock sequencer circuit generates three distinct

pulses, respectively triggering the following operations:

Clock 0: The microinstruction register is loaded with the

next microinstruction. Control signals are activated for

subsequent actions in the cycle.

Clock 1: Registers are selected for gating onto the datapath.

The ALU and shifter, using operations selected by control

bits, process the selected register values. Any required

memory operations are initiated. The value computed by the

ALU and shifter is stored back in the register file.

Clock 2: Completed memory operations are synchronized.

Student exercises using this model fall into two

categories. The first involves extending and experimenting

with the microcode interpreter and its connection to the

IJVM level; for example, we have assigned students the task

of extending the microcode interpreter to implement several

new IJVM instructions and to write an IJVM program to test

them. The second involves direct manipulation of the

simulated hardware. Students might be asked to replace

ALU and shifter plug-ins with circuits built on the DLSim

platform. (We have ourselves built an alternate

implementation of Mic-1 in which this has been carried out.)

Finally, Tanenbaum describes several extensions to the Mic-

1 architecture that could readily be applied to extend the

DLSim model.

STUDENT PROJECTS USING DLSIM 3

The processor models described here are suitable for a wide

variety of student design projects. These may be assigned to

the class as a whole, or as a term project where each student

may choose his own project. In this section we describe

some projects which have been carried out by students at

Oberlin.

• Programmable Logic Array (PLA). This project

involved writing a plug-in to simulate a PLA. The

design was based on a PLA with 8 inputs, 50 and gates,

and 6 outputs, but is parameterizable to any number of

gates. It was used to implement the control logic for the

MicroMIPS processor described earlier.

The PLA “program” is a text file containing binary

data representing the state of each programmable fuse

on the PLA. The file can be loaded into the PLA

through the DLSim 3 GUI. The same approach could

be used in developing plug-ins to represent other types

of programmable logic devices, such as FPGAs.

• Cache Memory. It is common in Computer

Organization courses to assign as a programming

assignment the simulation of a cache memory,

parameterized by factors such as size, associativity, and

replacement policy. Using DLSim 3, this project was

written as a plug-in. It incorporates the usual types of

cache parameterization, such as size, block size,

associativity, and replacement policy. It has an

interface which allows it to be inserted in the

MicroMIPS CPU implementation between the main

CPU circuit and its memory components. It also

collects statistics on cache hits and misses.

To complete this project, it was necessary to write a

program to simulate the basic operation of the cache

and to interface it to the CPU so that it would actually

work on real programs. Thus it was a more complete

project than simply writing a simulation program which

reads a memory trace from a file.

Using the cache plug-in in a CPU circuit does limit

the scale of the simulations it can perform to programs

written with the small instruction set of the MicroMIPS.

To facilitate larger scale simulations, a TestGenerator

plug-in was also written which reads a memory trace

from a file and feeds it to the cache plug-in.

• Calculator. The calculator project involve the design

of a hand calculator, backed by the MicroMIPS CPU.

The design required addressing several issues:

Design of a calculator plug-in with a view

containing a display area and keypad.

Design of an interface to the MicroMIPS processor,

using memory-mapped I/O. Each keystroke on the

calculator keypad triggers an input operation on the

CPU. CPU output operations cause characters to be

displayed on the calculator display.

Software. A program was written in MIPS

assembly language to support the calculator. It contains

a polling loop which checks the status of the calculator.

When a keystroke is available, it is read into memory

Session T1A

/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX

 39
th
 ASEE/IEEE Frontiers in Education Conference

 T1A-6

from the calculator’s data register. A subroutine is then

called to process the keystroke.

OTHER APPLICATIONS OF DLSIM 3

This paper has focused on the use of DLSim 3 at the

processor design level. It is a versatile tool, however, that

can be used at every level of study in a Computer

Organization course.

1. Conventional Logic Circuit Design. Without plug-ins,

DLSim 3 can be used as a low-level logic design

simulator. The basic building blocks of gates and flip-

flops can be used to implement any combinational or

sequential circuit. Some projects of this type, which

make use of DLSim 3’s card and chip abstractions, are

described in [6].

Conventional circuit design projects can be given

added impact by incorporating them into a CPU-level

platform. For example, a typical assignment at this

level is to design an ALU at the gate level. With

DLSim 3, students could be given a working CPU with

its ALU implemented as a plug-in. Their assignment

would be to replace the plug-in with a chip (using the

identical pin interface) of their own design. The full

CPU could then be used as the test platform for the chip.

Other CPU components, such as a register or

multiplexer, could likewise be used as design exercises.

The MicroMIPS control unit is simple enough to be

used as an exercise, built either with gates or a PLA

plug-in.

2. Assembly Language Programming. The MicroMIPS

and Mic-1 platforms implemented in DLSim 3 are

suitable for exercises in assembly language

programming. The simulated CPUs provide a test and

execution platform for programs which have been

translated into machine code by an assembler. For the

programs used in development of our MIPS

implementation, we used the MARS assembler [9].

MARS has its own GUI-based execution environment

but also supports a non-GUI interface which translates

an assembly language program into machine code in a

text file which can be loaded into the DLSim 3 memory

plug-in and then executed by the simulated processor.

3. Higher-level System Design. One of our goals is to

write a plug-in to represent a complete CPU. A variety

of system design exercises could be constructed using

this plug-in, including bus design (both data transfer and

arbitration), multiprocessor design, and cache memory

design.

SUMMARY

DLSim 3 is a highly versatile software tool designed for the

design and simulation of digital logic circuits. Through its

use of software plug-ins, it is capable of simulating digital

circuits of varying levels of complexity. The examples

presented in this paper demonstrate some of the ways that

DLSim 3 can be used as a pedagogical aid in Computer

Organization courses. In particular, we have been successful

in using it to simulate the CPU designs presented in the

popular textbooks of Tanenbaum and Patterson and

Hennessy, in order to demonstrate a variety of

implementation techniques; for example, hard-wired control,

microprogramming, and pipelining. We intend to continue

to expand our library of plug-ins and circuit designs, which

are available, along with the DLSim 3 software, at our

website www.dlsim.com.

REFERENCES

[1] Masson, A, Logicsim, http://wuarchive.wustl.edu/edu/math/software/

mac/LogicSim/, 1996.

[2] Poplawski, D. A., “A pedagogically targeted logic design and

simulation tool,” In WCAE’07, Proceedings of the 2007 workshop on

Computer architecture education, pages 1–7, June 2007.

[3] Barker, D. L., Digital works 3.0, http://matrixmultimedia.com/
datasheets/ eldwk.pdf, 2006.

[4] Burch, C., “Logisim: A graphical system for logic circuit design and

simulation,” J. Educ. Resour. Comput., 2(1):5–16, 2002.

[5] Burch, C., Logisim 2.1.6. http://ozark.hendrix.edu/~burch/logisim,
2007.

[6] Salter, R. M., and Donaldson, J.L., “Abstraction and Extensibility in

Digital Logic Simulation Software,” ACM SIGCSE Bulletin, 41, 1

(Mar. 2009), 418-422.

[7] Patterson, D. A., and Hennessy, J., Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann, 2007.

[8] Tanenbaum, A. S., Structured Computer Organization, Prentice Hall,

2005.

[9] Vollmar, K., and Sanderson, P., “MARS: An Education-oriented

Assembly Language Simulator,” ACM SIGCSE Bulletin, 38, 1 (Mar.
2006), 222-226.

