
Using DLSim 3: A Scalable, Extensible, Multi-level Logic
Simulator

Richard M. Salter and John L. Donaldson
Computer Science Department

Oberlin College
Oberlin, OH 44074

rms@cs.oberlin.edu, john.donaldson@oberlin.edu

ABSTRACT
Students of Computer Organization should be able to “learn
by doing” at all levels of computer design. DLSim 3 is a
multilevel simulation system that provides a unified platform
for studying system structure, from low level combinational
and sequential circuits, through design of a complete CPU.
Using DLSim 3, students recognize the uniformity of system
structure, as well as the principles of abstraction that link
the various levels of design.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education; K.3.1 [Computers and Ed-
ucation]: Computer Uses in Education—computer-assisted
instruction

General Terms
Design, Experimentation

Keywords
Computer Architecture, Logic Circuit Simulation, Abstrac-
tion

1. INTRODUCTION
DLSim 3 is a logical circuit simulation system designed with
several novel features that allow students to experience sim-
ulated computer operation at various levels. DLSim 3’s fea-
tures include:

Three different levels of abstraction. These are cards,
chips, and plug-ins. Cards are self-contained, fully editable
DLSim circuits. Chips are derived from DLSim circuits but
are opaque. Plug-ins are Java-based extensions and as such
can provide a higher level of functionality.

Cohesive structure. Unlike other simulators that support
circuit abstraction, a DLSim 3 circuit is presented as a single
entity in a multi-level format that permits uniform access to
all visible levels.
XML export DLSim 3 stores its data in both a binary and
XML-based format. The XML file provides open access,
permitting DLSim to serve, for example, as the design front
end for larger applications [1].

Copyright is held by the author/owner(s).
ITiCSE’08, June 30–July 2, 2008, Madrid, Spain.
ACM 978-1-60558-115-6/08/06.

DLSim’s abstraction capability provides two crucial factors
necessary for such a simulation system to achieve the desired
level of expressiveness:

• Extensibility. Abstract circuits extend the palette
of basic building blocks used to construct larger, more
complex circuits.

• Scalability. Abstract circuits permit designers to fo-
cus on a particular level of design, needing only to
understand the functional behavior of lower levels and
not their implementation.

2. DLSIM IN THE CLASSROOM
DLSim 3’s features are designed to support active student
learning. An instructor might supply a simple circuit (e.g.,
decoder, multiplexer, etc.) as a chip to demonstrate func-
tionality without revealing design. Students would then be
assigned the task of fleshing out the details.
Chips and plug-ins support top-down design. A high-level
view of a complex circuit is built using chips and/or plug-ins
for simpler components. One by one, they are replaced by
cards (showing a subcircuit’s structure with, perhaps, new
chips and plug-ins) until the design is fully revealed.
Another important role for the plug-in is when scalability
would otherwise prohibit the use of DLSim’s GUI interface
(e.g., a large scale random access memory). Finally, because
they are written in Java, plug-ins can be enhanced beyond
the plug-in interface. For example, a plug-in can perform
user I/O, or interact with files, keyboard and screen. Plug-
ins can also determine their appearance on the DLSim can-
vas, so that an ALU can “look” like an ALU.
DLSim 3 comes equipped with an API that simplifies plug-in
development and encourages users to extend the basic tool
set. A diverse plug-in library is currently under development
and will be distributed with the next release. Compilers
for translating circuits specified using VHDL or Verilog into
plug-in source code are also under consideration.

3. REFERENCES
[1] M. J. Jipping, K. Ludewig, S. Henry, and L. Tableman.

How to integrate FPGAs into a computer organization
course. In SIGCSE’06: Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education,
pages 234–238. ACM Special Interest Group on
Computer Science Education, March 2006.


