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Problem: Scalable Planning in Open Environments Solution: Many-Agent Planning under Openness

Algorithm 1 [-POMCP4: Open Many-Agent MCTS

Note: T’ is the tree (initially empty), p is a path from the root of
the tree (with p = () signifying the root), B, is the particle filter
signifying the set of state-model pairs encountered at the node at p
in the tree, PF is the root particle filter, NV is count of the number
of visits to each node in the tree initialized to some constant v > (),
Q is the Q function initialized to 0, ¢ a constant from UCB-1.

. procedure |-POMDP-MCTS(PF. 1)
time < 0
while time < 7 do
s', M « SampleParticle (PF)
UpdateTree(s", M",0,0)
Increment time

return argmax Q (0, a)
acA;

Many-Agent Environments: environments with dozens to thousands of agents
Open Environments: agents join and leave the environment (temporarily or permanently) over time
* Real-world Examples: wildfire fighting, autonomous ridesharing, cybersecurity

« Problem: Openness requires agents to not only predict what actions their peers will take in order to
choose a best response, but also first estimate which peers will even be present to take actions
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Main principle: only model some neighbors to counter
the increased complexity caused by openness

AR A e

 In polling and survey theory, social scientists only - procedure UPDATETREE(s", M, ¢, )

| 1
| : . 2: ift > H then
o P survey a small randomly sampled portion of the 3:  return 0
o . . . . . 4 B, + B, U {(st, 1’\-[")}
A population to estimate the behaviors and opinions of 5 ifp T then
N | .
y > all people 6: T « T + leafnode(p)
( : peop 7:  return Rollout(s*, M*,t)
8: else
. . . . 9: C" « SampleConfiguration(s‘, M")
Subject agent estimates action counts for the entire 10: at « argmax Q (p, a) + c/(10g N,) /Npsa

» Tracking the presence of neighbors results in a more complicated problem model. The increase in neighborhood by extrapolating the estimated actions of acA;

o s MY o r! « Simulate(s', M, !, C*
the problem model size is: N, < 1+N, ( )
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modeled neighbors Ny (i) using the multinomial
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* exponential if agent presence is considered in the environment state, which is intractable, distribution 4 o eyt (a'. og)was
especially for many-agent environments t gty , ( : { A A }) 15: R <« r!+~-UpdateTree(s'*!, M'*' ¢ + 1,p/)
P | y | y-ag | | o | P(CQ'S ,M ) Multi |Ng(l)|; pal,Ne(l), ...;palAl,Ne(l) 16: Q(P,af)<—Q(P,a§)+R—Q(P,af)/Np,_m§
 only linear if agent presence is considered within the mental models of each agent in an A s o 17:  return R
[-POMDP-Lite problem model (or other -POMDP variants) 5 o = e )=aNe® L: procedure ROLLOUT(s", M", 1)
p pa,Ng (l) |1’\70 (l)l 2: R« 0. t' «— t
3. whilet < Hd
4: wC' ‘ f— Sfample%opﬁguration(s‘, M*")
« Larger planning problem affects scalability as the number of agents increases (to many-agents) I-POMCP, Many-Agent MCTS Algorithm: adapts > Ky i?mqlfgf::?riflsii)mulate(st', M at. CY)
»  MCTS algorithms: each trajectory requires sampling actions for all neighbors, so more agents POMCP algorithm to many-agent open environments pone T VTt et
results in fewer sampled trajectories in a fixed time budget (for responsive reasoning) - Estimate actions of a few neighbors then I: procedure SAMPLECONFIGURATION(s", M")
. o . . . . , . 2 C(a,0) 0, tp(y0)—g iy &0 Va0
« With openness, time is also spent updating estimates of presence of each neighbor, further extrapolate to all neighbors’ behaviors 3 for M, € ide
. . . . . . . . . . 4 a~ 7Tj.l—1(8t)
reducing the number of trajectories possible within a time budget * Better time complexity than previous I-POMCP 5. Pon(utyantia, () © ety ) F 1
« Frame-action Anonymity offers some relief by replacing joint actions with counts of actions MCTS algorithm (Hua et al., 2015). 6: for 0 € © do
. . - : . 7: forac Ado o
called configurations € when environment dynamics do not depend on which agents take + Comparable to Dec-POMDP MCTS algorithms 8 B, at) © Ponatycasiocs) / [ N0 (D)

which actions.
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(Amato & Oliehoek, 2015; Best et al., 2019) but does o for g € No(i) do

a ~ Cat(pmﬁe,puzﬂe vo 5P, .N'e)

« Key observation: estimating counts of actions might not require estimating actions for all not require the subject agent to observe other 11: C(a.0) « Cla.0) + 1

12: return '

agents individually agents’ actions nor their observations

Theoretical Results

Theorem 1 With confidence 1 — «, the error

- - - - Theorem 2 The regret of the subject agent from
incurred by the subject agent in its estimate C.oro!lar)f 1 The MAXimum error in the multmon?zal | e | 8 ot of i ) e 5 Do
P . . Necessary Number of Neighbors to Model distribution of the configuration of other agents” actions = Modeling only a Subset ol 1ts NE1ghbOTS 1S bounded by:
of the proportion P, 5.y of its neighbors of e P 5
. o . . Wikh 9% Confidence P(C|s*, M*) is bounded by: Vi = Tkl
frame 6 that will perform action a is _ €5 — 005 01-=-02==05 %
bounded by the given €5 so long as it models 2 200 . — 1P*(Clst, MY) — P(C|st, M) < 2€p(c) ' IC] * Rinax [yk—l + ;<1 + 3y €| )]
the following number of neighbors: = 2504 P(C) ’ () _ 1-y 1-vy
2 200- Ng (D)]! ’ P . .
, g ] < [oINo (1 ' H(ﬁa 6 — €5) — 1_[ ﬁg(ea,e) which is linear in the error €p () in the agent’s
tn—l% T [lg,q0 C(a,0)! 0.4 ba estimation of configuration likelihoods caused by
N e . . . . .
P €5 5 when the subject agent models only ny neighbors (from modeling some neighbors only and proportional to
ng = |No (D] 2 t > £ 5 o = = oo Theorem 1) to achieve at most €, error in its estimates of ~ 0nly \/1/ng in the worst case (due to the fact that
N—1+ ( - ’5> Number of Neighbors N the action probabilities parameterizing the multinomial  €p(¢) is at worst linear in €5 and €5 is proportional to
p distribution. [1/ng)

Experimental Results

Wildfire Problem: ground firefighter and helicopter agents Agent Reasoning Models: Heuristic randomly chooses active fires, Nested MDP is principled reasoning with value iteration at level 1,
with different capabilities cooperate to put out nearby fires. and I-POMCP, is principled reasoning at level 2 with MCTS modeling ng neighbors from Theorem 1 based on €; maximum error
o Gf)aolz maximize rewards earped for putting out fires (and -POMCPo =0 Hestec{MDP Average Number of Fire Locations Put Out
minimize costs for fires burning out) -POMGPY e =02 euristic - » - - -
. Acent " ; o them t I-POMCPo € =0.3 2.0
gents can run ou of suppressant, requiring them to Average Rewards Earned by Agents T
temporarily leave the environment to recharge. 120- s [
« Consider an order of magnitude more agents than prior 90. %
studies on planning in open environments -ces = 1.0
Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 % 60 : ]
p 1
i & ® (N ™ ™ X 30- +|h 0.5
o R - (Y TN T T (e o ol 0.0 Ji
- - - - - Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
g/ M M I | [ W W [ | W ) _ Setup Setup
20 ‘3 20 ‘g B 30 % 30 % 15 —2 » [-POMCP outperformed all baselines (statistically significantly higher rewards in 4 of 5 setups) due to better coordination between
50 :k 50 % 20+E 20E r % agents by working together to put out fires in more locations
15 —g * In the more complicated Setups 2-4, modeling fewer neighbors ngy due to higher allowable error €; led to improved performance due to
109,186 118,041 878,416 9,662,576 15,256 more sampled trajectories in the fixed time budget. This implies that the approximation error caused by modeling only some
Configurations  Configurations  Configurations  Configurations  Configurations neighbors was less than the approximation error from sampling fewer trajectories in MCTS.
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