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Problem: Scalable Planning in Open Environments Solution: Many-Agent Planning under Openness

Theoretical Results

Corollary 1 The maximum error in the multinomial 
distribution of the configuration of other agents’ actions 
𝑷 𝑪 𝒔𝒕,𝑴𝒕 is bounded by:
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when the subject agent models only 𝑛6 neighbors (from 
Theorem 1) to achieve at most 𝜖 @A error in its estimates of 
the action probabilities parameterizing the multinomial 
distribution.

Theorem 2 The regret of the subject agent from 
modeling only a subset of its neighbors is bounded by:
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which is linear in the error 𝜖((*) in the agent’s 
estimation of configuration likelihoods caused by 
modeling some neighbors only and proportional to 
only 𝟏/𝒏𝜽 in the worst case (due to the fact that 
𝜖((*) is at worst linear in 𝜖 @A and 𝜖 @A is proportional to 
1/𝑛6)

Wildfire Problem: ground firefighter and helicopter agents 
with different capabilities cooperate to put out nearby fires.  
• Goal: maximize rewards earned for putting out fires (and 

minimize costs for fires burning out)
• Agents can run out of suppressant, requiring them to 

temporarily leave the environment to recharge.
• Consider an order of magnitude more agents than prior 

studies on planning in open environments

• I-POMCPO outperformed all baselines (statistically significantly higher rewards in 4 of 5 setups) due to better coordination between 
agents by working together to put out fires in more locations

• In the more complicated Setups 2-4, modeling fewer neighbors 𝑛6 due to higher allowable error 𝜖 @A led to improved performance due to 
more sampled trajectories in the fixed time budget.  This implies that the approximation error caused by modeling only some 
neighbors was less than the approximation error from sampling fewer trajectories in MCTS.

I-POMCPO Many-Agent MCTS Algorithm: adapts 
POMCP algorithm to many-agent open environments
• Estimate actions of a few neighbors then 

extrapolate to all neighbors’ behaviors
• Better time complexity than previous I-POMCP 

MCTS algorithm (Hua et al., 2015).
• Comparable to Dec-POMDP MCTS algorithms 

(Amato & Oliehoek, 2015; Best et al., 2019) but does 
not require the subject agent to observe other 
agents’ actions nor their observations

Subject agent estimates action counts for the entire 
neighborhood by extrapolating the estimated actions of 
modeled neighbors [𝑁6(𝑖) using the multinomial 
distribution
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Main principle: only model some neighbors to counter 
the increased complexity caused by openness 
• In polling and survey theory, social scientists only 

survey a small randomly sampled portion of the 
population to estimate the behaviors and opinions of 
all people

Many-Agent Environments: environments with dozens to thousands of agents
Open Environments: agents join and leave the environment (temporarily or permanently) over time
• Real-world Examples: wildfire fighting, autonomous ridesharing, cybersecurity
• Problem: Openness requires agents to not only predict what actions their peers will take in order to 

choose a best response, but also first estimate which peers will even be present to take actions

• Tracking the presence of neighbors results in a more complicated problem model.  The increase in 
the problem model size is:
• exponential if agent presence is considered in the environment state, which is intractable, 

especially for many-agent environments
• only linear if agent presence is considered within the mental models of each agent in an 

I-POMDP-Lite problem model (or other I-POMDP variants)

• Larger planning problem affects scalability as the number of agents increases (to many-agents)
• MCTS algorithms: each trajectory requires sampling actions for all neighbors, so more agents 

results in fewer sampled trajectories in a fixed time budget (for responsive reasoning)
• With openness, time is also spent updating estimates of presence of each neighbor, further 

reducing the number of trajectories possible within a time budget
• Frame-action Anonymity offers some relief by replacing joint actions with counts of actions 

called configurations 𝑪 when environment dynamics do not depend on which agents take 
which actions.  
• Key observation: estimating counts of actions might not require estimating actions for all 

agents individually

Agent Reasoning Models: Heuristic randomly chooses active fires, NestedMDP is principled reasoning with value iteration at level 1, 
and I-POMCPO is principled reasoning at level 2 with MCTS modeling 𝑛6 neighbors from Theorem 1 based on 𝜖 @A maximum error

Theorem 1 With confidence 1 − 𝛼, the error 
incurred by the subject agent in its estimate 
of the proportion j𝒑𝒂,[𝑵𝜽(𝒊) of its neighbors of 
frame 𝜃 that will perform action 𝑎 is 
bounded by the given 𝝐j𝒑 so long as it models 
the following number of neighbors:
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