
Lexical Binding

There are two ways a variable can be used in a program:
• As a declaration
• As a "reference" or use of the variable

Scheme has two kinds of variable "declarations" -- the
bindings of a let-expression and the parameters of a lambda-
expression. The scope of a declaration is the portion of the
expression or program to which that declaration applies. Like
Java and C, but unlike classic Lisp, Scheme uses lexical
binding (sometimes called static binding), which means that
the scope of a variable is determined by the textual layout of
the program.

Every language has its own scoping rules. For example, what is
the scope of variable j in this Java program?

public static void main(String[] args) {
 int i;
 i = 1;
 while (i < 10) {
 int j;
 j = i;
 System.out.write(i);
 i += 1;
 }
 System.out.write(j);
}

In Scheme it is tempting to say that the scope of a
variable declared in the bindings of a let-expression is the
body of the expression, but this isn't the case. For
example

(let ([x 5]) (* ((lambda (x) (+ x 3)) 7) x))

the scope of the [x 5] declaration is only the second
operand of the *-expression.

It is more accurate to say that the scope of a variable
declared in a let-expression or lambda-expression is the
body of that expression unless that variable also occurs
bound in the body.

If the variable occurs bound in the body, we say that the inner
binding shadows the outer binding.

To determine the appropriate binding to which a bound
variable refers:

• Start at the reference (usage of the variable).
• Search the enclosing regions starting with the

innermost and working outward, looking for a
declaration of the variable.

• The first declaration you find is the appropriate binding.
• If you don't find such a binding the variable is free.

Contour diagrams draw the boundaries of the regions in
which variable declarations are in effect:

(lambda (x)

 (lambda (y)

 ((lambda (x) (x y)) x)))

The body of a let or lambda expression determines
a contour. Each variable refers to the innermost
declaration outside its contour.

The lexical depth of a variable reference is 1 less than the
number of contours crossed between the reference and
the declaration it refers to.

For example
 (lambda (x)

 (lambda (y)

 (+ x y)))

In the (+ x y) portion of this expression x has lexical depth
1, while y has lexical depth 0.

(lambda (x y)

 ((lambda (a)

 (+ x (* a y))) x)

Here x has lexical
depth 1

Here x has lexical
depth 0

The lexical address of a variable reference consist of a pair:
a) The lexical depth of the reference
b) The 0-based position of the variable in its

declaration.
We might write this as [depth:position]

For example, consider the expression

(let ([x 3] [y 4])

 (lambda (a b)

 (lambda (c)

 (a (+ (b x) c))))

[1:0] [1:1] [2:0] [0:0]

We could use lexical addresses to completely replace variable
names:

(let ([3] [4])
 (lambda 2
 (lambda 1
 ([1:0] (+ ([1:1] [2:0]) [0:2))))

The lexical address is essentially a pointer to where the
variable can be found on the runtime stack.

Dynamic Binding
What is the value of the following expression?

(let ([y 3])
 (let ([f (lambda (x) (+ x y))])
 (let ([y 17])
 (f 2))))

The real question, of course, is What is the value of y in the
body of f when we call (f 2)?

a) Scheme, Java and C use static binding, also called lexical
binding. They connect the reference of y to the nearest
surrounding declaration of y, which in this case is [y 3].

b) Early Lisp used dynamic binding, which connects a
reference of y to the most recent declaration of y, which
in this case is [y 17].

We have talked before about how to evaluate lambda
expressions and applications (function calls) in Scheme,
which is lexically scoped -- a lambda expression evaluates to
a closure, which is a pair containing the environment at the
time the lambda is evaluated (the surrounding environment)
and the parameters and body of the lambda expression.
When we apply this closure to argument expressions we
evaluate the arguments in the current environment, make a
new environment that extends the closure's environment
with the new bindings, and evaluate the closure's body
within this new environment.

In Java and C, which are also lexically scoped but without
lambda expressions, the environments are much more
static. At the time a program is compiled the compiler can
keep track of the environments and link each variable
reference to its declaration and its location on the runtime
stack.

Think back to this example:

(let ([y 3])
 (let ([f (lambda (x) (+ x y))])
 (let ([y 17])
 (f 2))))

In dynamic scoping the binding of y that applies in the
application (f 2) is [y 17], and the whole expression returns
19.

How would you evaluate lambdas and applications in a
dynamically scoped language?

a) There is no need for closures; they maintain the lexical
environment, which dynamic binding does not use.

b) The value of a lambda expression is just its parameters
and body.

c) To apply a procedure to a list of arguments, we extend
the current environment with the bindings of the
parameters to their argument values and evaluate the
body in this environment.

Why do (or did) people use dynamic binding?
• It was easy to implement. Indeed, dynamic binding

was understood several years before static binding.
• It made sense to some people; the function
 (lambda (x) (+ x y) should use whatever the latest
 version of y.

Why do we now use lexical binding?
• Most languages we use today are derived from Algol-

60, which used lexical binding.
• Compilers can use lexical addresses, known at

compile time, for all variable references.
• Code from lexically-bound languages is easier to

verify.
• It makes more sense to most people.

