Map and Apply
Map and Apply are two very powerful Scheme tools that are frequently misunderstood by students.

Map in general can take a function of n-arguments and n lists, but it is easier to think of it at the start if we have a function of one argument and a single list of values. The result of \(\text{map } f \text{ lat} \) is a new list, whose first element is \((f \text{ (car lat)}) \), whose second element is \((f \text{ (cadr lat)}) \) and so forth. The ith element of the returned list is the result of applying \(f \) to the ith element of \(\text{lat} \).
For example,

\[(\text{map } (\lambda x (+ x 2)) '\(1\ 2\ 3\ 4\ 5\))\]

returns

\[(3\ 4\ 5\ 6\ 7)\]

The second argument to map does not need to be a flat list; map takes as an argument each element at the top level of the list.

For example,

\[(\text{map car '}(\ (1\ 2)\ (3\ (4\ 5))\ (6)))]\]

returns

\[(1\ 3\ 6)\]
Map in general can take a function of \(n \) arguments and \(n \) argument-lists, all of the same length. The result of

\[
\text{(map } f \text{ arg1 arg2 ... argn)}
\]

is a new list whose \(i \)th element is the result of applying \(f \) to the \(i \)th element of each of the argument lists

For example

\[
\text{(map (lambda (x y) (+ x y)) '(1 2 3) '(4 5 6))}
\]

returns

\[
(5 7 9)
\]
Map has all kinds of useful applications. For example, suppose we have a binding list in a let expression:

\[([x \ 3] \ [y \ 45] \ [z \ 123])\]

We can get the list of symbols being bound, \((x \ y \ z)\), from

\((\text{map car } '([x \ 3] \ [y \ 45] \ [z \ 123]))\)

and the list of values being bound from

\((\text{map cadr } '([x \ 3] \ [y \ 45] \ [z \ 123]))\)
If you write the factorial function

\[(\text{define fact} \ (\lambda (x) (\text{if} \ (= x 1) 1 (* x (\text{fact} (- x 1)))))))\]

and what to check it out quickly, you can do so with

\[(\text{map fact} \ '(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7))\]

and get

\[(1 \ 2 \ 6 \ 24 \ 120 \ 720 \ 5040)\]
Apply has a simpler definition, but I find that students have a harder time thinking about it. If f is a function of n arguments and L is a list of n elements,

\[(\text{apply } f \text{ L})\]

is the result of calling f with the elements of L as its arguments.

For example, \((+ \ '(2 3))\) makes no sense but \((\text{apply } + \ '(2 3))\) does make sense and has the value 5, as you would expect.
We can define a procedure that finds the distance of a 2D point from the origin:

\[
\text{(define dist}
\begin{align*}
&\quad \text{(lambda (x y)} \\
&\qquad \quad (\text{sqrt (+ (* x x) (* y y))))}
\end{align*}
\text{)}
\]

\[(\text{dist 3 4)}\text{ correctly returns 5.}\]

However, if we have a point p defined as a pair: (x y) we can't use dist to find its distance from the origin because dist wants 2 separate arguments. However we can do this with apply:

\[(\text{apply dist p)}\]
Max is a pre-defined Scheme function that takes any number of numerical arguments and returns the largest of its arguments. For example,

```
    (max 2 5 6 3 9 5 6)
```

returns 9.

We might want to find the maximum value of a lat; we can get this with

```
    (apply max lat)
```
Map and apply are often used together to recurse on a structured list.

For example, here is a function that finds the largest number in a structured list of numbers, such as \((2 \ (4 \ 5 \ (6)) \ 3 \ (4 \ (5))):(\)

\begin{verbatim}
(define largest
 (lambda (L)
 (cond
 [(null? L) -1]
 [(number? L) L]
 [else (apply max (map largest L))])))
\end{verbatim}
Here is a function that counts the number of atoms in an S-expression. Remember that an S-expression can be null, an atom, or a list:

```
(define count
 (lambda (L)
   (cond
     [(null? L) 0]
     [(not (pair? L)) 1] ; this means L is an atom
     [else (apply + (map count L))]))
```