Map and Apply
Map and Apply are two very powerful Scheme tools that are frequently misunderstood by students.

Map in general can take a function of n-arguments and n lists, but it is easier to think of it at the start if we have a function of one argument and a single list of values. The result of \(f \) map \(f \) \text{lat} \)
is a new list, whose first element is \((f \ (\text{car} \ \text{lat}))\), whose second element is \((f \ (\text{cadr} \ \text{lat}))\) and so forth. The ith element of the returned list is the result of applying \(f \) to the ith element of \text{lat}.

For example,

\[(\text{map } (\lambda x \ (x + 2)) \ '(1 \ 2 \ 3 \ 4 \ 5))\]

returns

\[(3 \ 4 \ 5 \ 6 \ 7) \]

The second argument to map does not need to be a flat list; map takes as an argument each element at the top level of the list.

For example,

\[(\text{map } \text{car} \ '((1 \ 2) (3 \ (4 \ 5)) \ (6)))\]

returns

\[(1 \ 3 \ 6) \]
Map in general can take a function of \(n \) arguments and \(n \) argument-lists, all of the same length. The result of

\[
\text{(map } f \text{ arg1 arg2 ... argn })
\]

is a new list whose \(i \)th element is the result of applying \(f \) to the \(i \)th element of each of the argument lists.

For example

\[
\text{(map (lambda (x y) (+ x y)) '(1 2 3) '(4 5 6))}
\]

returns

\[
(5 \ 7 \ 9)
\]
Map has all kinds of useful applications. For example, suppose we have a binding list in a let expression:

\[(\{x \, 3\} \, \{y \, 45\} \, \{z \, 123\})\]

We can get the list of symbols being bound, \((x \, y \, z)\), from

\[(\text{map car}'(\{x \, 3\} \, \{y \, 45\} \, \{z \, 123\}))\]

and the list of values being bound from

\[(\text{map cadr}'(\{x \, 3\} \, \{y \, 45\} \, \{z \, 123\}))\]
If you write the factorial function

```
(define fact
  (lambda (x)
    (if (= x 1) 1 (* x (fact (- x 1))))))
```

and what to check it out quickly, you can do so with

```
(map fact '(1 2 3 4 5 6 7))
```

and get

```
(1 2 6 24 120 720 5040)
```
Apply has a simpler definition, but I find that students have a harder time thinking about it. If f is a function of n arguments and L is a list of n elements,

$$(\text{apply } f \text{ } L)$$

is the result of calling f with the elements of L as its arguments.

For example, $(+ \text{ '}(2 \text{ 3}))$ makes no sense but $(\text{apply } + \text{ '}(2 \text{ 3}))$ does make sense and has the value 5, as you would expect.
We can define a procedure that finds the distance of a 2D point from the origin:

```scheme
(define dist
  (lambda (x y)
    (sqrt (+ (* x x) (* y y)))))
```

`(dist 3 4)` correctly returns 5.

However, if we have a point p defined as a pair: (x y) we can't use dist to find its distance from the origin because dist wants 2 separate arguments. However we can do this with apply:

```scheme
(apply dist p)
```
Max is a pre-defined Scheme function that takes any number of numerical arguments and returns the largest of its arguments. For example,

```
(max 2 5 6 3 9 5 6)
```

returns 9.

We might want to find the maximum value of a lat; we can get this with

```
(apply max lat)
```
Map and apply are often used together to recurse on a structured list.

For example, here is a function that finds the largest number in a structured list of numbers, such as (2 (4 5 (6)) 3 (4 (5))):

```
(define largest
  (lambda (L)
    (cond
      [(null? L) -1]
      [(number? L) L]
      [else (apply max (map largest L))])))
```
Here is a function that counts the number of atoms in an S-expression. Remember that an S-expression can be null, an atom, or a list:

```
(define count
  (lambda (L)
    (cond
      [(null? L) 0]
      [(not (pair? L)) 1] ; this means L is an atom
      [else (apply + (map count L))])))
```