
The Y-Combinator
in Scheme



Programming language theorists usually develop the Y-Combinator as 
a "fixed-point operator", so that for any expression X  the result (Y X) is 
a fixed-point of X, meaning that (X (Y X)) = (Y X).  Unless you have a lot 
of experience with the right sort of mathematics it is hard to see the 
implications of that, so we will develop it in a different way.  

Our goal will be to find a way to write recursive functions in the pure 
lambda-calculus.  At first glance that is impossible: how can a lambda 
expression "call itself" if it doesn't have a name??  It turns out that the 
Y-Combinator is the solution to this puzzle, but it will take some work 
to get there.



We need a recursive function to work with. We could use almost 
anything, but a particularly simple target is the recursive length 
function. In Scheme this is

(define length (lambda (lat)
(cond

[(null? lat) 0]
[else (+ 1 (length (cdr lat)))])))

We are looking for a way to write this in the lambda-calculus without 
assigning names to anything.



First, here is a function that loops forever:

(define eternity (lambda (x) (eternity x)))

There is no problem making this definition, but if we ever call 
function eternity with any argument it will recurse forever.



Here is a function related to the length function:

(define L (lambda (f)
(lambda (lat)

(cond
[(null? lat) 0]
[else  (+ 1 (f (cdr lat)))]))))

Here are some functions we can get from L:
(define L0 (L eternity))

(L0 null) is 0; (L0 lat) runs forever if lat isn't null



(define L1 (L L0))   == (L (L eternity))
(L1 lat) is the correct length of lat if lat has 0 or 1 elements; it fails if 
lat has more than 1 elements

(define L2 (L L1))  == (L (L (L eternity)))
(define L3 (L L2))
(define L4 (L L3))
etc.

Function Ln finds the length of all lats that have no more than n 
elements.  

We  are getting somewhere, but we would need L∞ to find the 
length of all lats.



Here is a slightly more complicated approach:
(define M1

(let ([g (lambda (f)
(lambda (lat)

(cond
[(null? lat) 0]
[else (+ 1 ((f eternity) (cdr lat)))])))])

( g g)))

Note that (g eternity) is
(lambda (lat)

(cond
[(null? lat) 0]
[else (+ 1 ((eternity eternity) (cdr lat)))]))

which is functionally the same as L0



and (g g) is
(lambda (lat)

(cond
[(null? lat) 0]
[else (+ 1 ((g eternity) (cdr lat)))]))

This is the same as (L L0).  So M1 is a stand-alone function that is 
equivalent to L1.  We are getting somewhere.



(define N
(let ([h (lambda (f)

(lambda (lat)
(cond

[(null? lat) 0]
[else (+ 1 ( (f f) (cdr lat)))])))])

(h h)))

N is (h h), which is
(lambda (lat)

(cond
[(null? lat) 0]
[else (+ 1 ( (h h) (cdr lat)))]))

That last line could be written [else (+ 1 (N (cdr lat)))]))
so N is exactly the recursive length function.



Don't allow the let-expression in the definition of N throw you off.

(let ([a b]) exp) is completely equivalent to ( (lambda (a) exp) b) so we 
could rewrite N as a pure lambda-expression:

(define N
( (lambda (h) (h h))

(lambda (f)
(lambda (lat)

(cond
[(null? lat) 0]
[else (+ 1 ( (f f) (cdr lat)))])))))



We can write other recursive functions in this style:

The member? function is
(define member?

(let ([e (lambda (f)
(lambda (a lat)

(cond
[(null? lat) #f]
[(eq? a (car latl)) #t]
[else ( (f f) a (cdr lat))])))])

(e e)))



The factorial function is

(define Factorial
(let ([c (lambda (f)

(lambda (n)
(cond

[(= 0 n) 1]
[else (* n ( (f f) (- n 1)))] ))))])

(c c))) 



There is a pattern to coding like this.  Consider the following which is 
an encoding of the Y-Combinator:

(define Y (lambda (exp)
(let ([a (lambda (f)

(exp (lambda (x) (  (f f) x)))))])
(a a))))

Then (Y (lambda(s)
(lambda (lat)

(cond
[(null? lat) 0]
[else (+ 1 (s (cdr lat)))]))))

is the length function



To see why, note that 
(Y (lambda(s)

(lambda (lat)
(cond

[(null? lat) 0]
[else (+ 1 (s (cdr lat)))]))))

is
(let ([a (lambda (f)

(lambda (lat)
(cond

[(null? lat) 0]
[else (+ 1 (lambda (x)  ((f f) x))(cdr lat))))

(a a)

which is equivalent to
(let ([a (lambda (f)

(lambda (lat)
(cond

[(null? lat) 0]
[else (+ 1 ((f f) (cdr lat))))

(a a)



and this last expression is the same as N.



Similarly,
(Y (lambda (s)

(lambda (n)
(cond

[(= 0 n) 1]
[else (* n (s (- n 1)))]))))

is the factorial function.

In general, if you take the definition of any recursive function of one 
variable, wrap a (lambda (s) ...) around it and use s as the name of the 
function for the recursive call, Y takes this expression and turns it into 
a recursive function.



Y converts expressions into recursive functions of 1 variable.
If we define Y2 as

(define Y2 (lambda (name)
(let ([a (lambda (f)

(name (lambda (x y) ((f f) x y))))])
(a a))))

then Y2 makes recursive functions of 2 variables. 



For example
(Y2 (lambda (s)

(lambda (a lat)
(cond

[(null? lat) null]
[(eq? a (car lat)) (cdr lat)]
[else (cons (car lat) (s a (cdr lat)))]))))

is the rember function and
(Y2 (lambda (s)

(lambda (a lat)
(cond

[(null? lat) null]
[(eq? a (car lat)) (s a (cdr lat))]
[else (cons (car lat) (s a (cdr lat)))]))))

is the rember-all function



The Y-Combinator shows that all recursive functions can be written in 
the pure lambda- calculus.  Using this fact, it can be shown that the 
lambda-calculus is Turing Complete: Turing Machines, and hence any 
algorithm, can be expressed in the lambda-calculus.  We have seen 
an algorithm for expressing any lambda-expression in terms of the 
combinators S and K.  This means not only that the Combinatorial 
Calculus is Turing Complete, but that all possible algorithms can be 
expressed as combinations of two simple combinators: S and K. This 
is remarkable.

We have also shown that recursion does not require functions to be 
given names. Anonymous functions can be recursive! Who knew?  


