The Y-Combinator in Scheme

Programming language theorists usually develop the Y -Combinator as a "fixed-point operator", so that for any expression X the result $(Y X)$ is a fixed-point of X, meaning that $(X(Y X))=(Y X)$. Unless you have a lot of experience with the right sort of mathematics it is hard to see the implications of that, so we will develop it in a different way.

Our goal will be to find a way to write recursive functions in the pure lambda-calculus. At first glance that is impossible: how can a lambda expression "call itself" if it doesn't have a name?? It turns out that the Y-Combinator is the solution to this puzzle, but it will take some work to get there.

We need a recursive function to work with. We could use almost anything, but a particularly simple target is the recursive length function. In Scheme this is
(define length (lambda (lat)

(cond

```
[(null? lat) 0]
[else (+ 1 (length (cdr lat)))])))
```

We are looking for a way to write this in the lambda-calculus without assigning names to anything.

First, here is a function that loops forever:

(define eternity (lambda (x) (eternity x)))

There is no problem making this definition, but if we ever call function eternity with any argument it will recurse forever.

Here is a function related to the length function:
(define L (lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (+ $1(\mathrm{f}($ cdr lat) $))])))$)

Here are some functions we can get from L :
(define L_{0} (L eternity))
(L_{0} null) is 0 ; (L_{0} lat) runs forever if lat isn't null
(define $\left.L_{1}\left(L L_{0}\right)\right)==(L$ (L eternity))
(L_{1} lat) is the correct length of lat if lat has 0 or 1 elements; it fails if lat has more than 1 elements
(define $\left.L_{2}(L L 1)\right)==(L(L(L$ eternity $)))$
(define $L_{3}(L L 2)$)
(define L_{4} (L L3))
etc.
Function L_{n} finds the length of all lats that have no more than n elements.

We are getting somewhere, but we would need L_{∞} to find the length of all lats.

Here is a slightly more complicated approach:
(define M_{1}
(let ([g (lambda (f)
(lambda (lat)
(cond

```
[(null? lat) 0]
[else (+ 1 ((f eternity) (cdr lat)))])))])
```

$$
(\mathrm{g} \mathrm{~g})))
$$

Note that (g eternity) is
(lambda (lat)
(cond

```
[(null? lat) 0]
[else (+ 1 ((eternity eternity) (cdr lat)))]))
```

which is functionally the same as L_{0}
and (gg) is
(lambda (lat)
(cond

$$
\begin{aligned}
& {[(\text { null? lat) 0] }} \\
& [\text { else (+ } 1((\text { g eternity })(\text { cdr lat) }))]))
\end{aligned}
$$

This is the same as (LLO). So M_{1} is a stand-alone function that is equivalent to L_{1}. We are getting somewhere.
(define N
(let ([h (lambda (f)
(lambda (lat)
(cond

$$
\begin{aligned}
& {[(\text { null? lat) 0] }} \\
& [\text { else }(+1(\text { (f f) (cdr lat)) })]))])
\end{aligned}
$$

$$
(\mathrm{h} h)))
$$

N is ($\mathrm{h} h$), which is
(lambda (lat)
(cond
[(null? lat) 0]

$$
\text { [else (+ } 1 \text { ((h h) (cdr lat)))])) }
$$

That last line could be written [else (+ $1(\mathrm{~N}(\mathrm{cdr}$ lat)))])) so N is exactly the recursive length function.

Don't allow the let-expression in the definition of N throw you off.

(let ([a b]) exp) is completely equivalent to ((lambda (a) exp) b) so we could rewrite N as a pure lambda-expression:
(define N
((lambda (h) (h h))
(lambda (f)
(lambda (lat)
(cond

```
[(null? lat) 0]
```

[else (+ 1 ((f f) (cdr lat)))])))))

We can write other recursive functions in this style:

The member? function is
(define member?
(let ([e (lambda (f)

> (lambda (a lat)
> (cond
$[($ null? lat) \#f]
$[($ eq? a (car latl)) \#t]
$[$ else ((f f) a (cdr lat))])))])
(e e)))

The factorial function is

(define Factorial
(let ([c (lambda (f) (lambda (n) (cond

$$
\begin{aligned}
& {[(=0 \mathrm{n}) 1]} \\
& \left.\left.\left.\left.\left.\left.\left[\operatorname{else}\left({ }^{*} \mathrm{n}((\mathrm{ff})(-\mathrm{n} 1))\right)\right]\right)\right)\right)\right)\right]\right)
\end{aligned}
$$

$$
\left.\left(\begin{array}{c}
c
\end{array}\right)\right)
$$

There is a pattern to coding like this. Consider the following which is an encoding of the Y-Combinator:
(define Y (lambda (exp) (let ([a (lambda (f)
$(\exp (\operatorname{lambda}(x)((f f) x)))))])$
(a a)))

Then (Y (lambda(s)
(lambda (lat)
(cond

$$
\begin{aligned}
& {[(\text { null? lat) 0] }} \\
& [\text { else }(+1(\text { s (cdr lat) }))]))))
\end{aligned}
$$

is the length function

To see why, note that

(Y (lambda(s)
(lambda (lat)
(cond

> [(null? lat) 0]
[else (+ 1 (s (cdr lat)))]))))
is
(let ([a (lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (+ 1 (lambda (x) ((ff) x))(cdr lat))))
(a a)
which is equivalent to
(let ([a (lambda (f)
(lambda (lat)
(cond
[(null? lat) 0]
[else (+ 1 ((ff) (cdr lat))))
(a a)

Similarly,
(Y (lambda (s)
(lambda (n)
(cond

$$
\begin{aligned}
& {[(=0 \mathrm{n}) 1]} \\
& \left.\left.\left.\left.\left[\text { else }\left({ }^{*} \mathrm{n}(\mathrm{~s}(-\mathrm{n} 1))\right)\right]\right)\right)\right)\right)
\end{aligned}
$$

is the factorial function.

In general, if you take the definition of any recursive function of one variable, wrap a (lambda (s) ...) around it and use s as the name of the function for the recursive call, Y takes this expression and turns it into a recursive function.
Y converts expressions into recursive functions of 1 variable. If we define Y2 as

(define Y2 (lambda (name)
(let ([a (lambda (f) (name (lambda (xy) ((ff) xy))))]) (a a))))

then Y 2 makes recursive functions of 2 variables.

For example

(Y2 (lambda (s)
(lambda (a lat)
(cond

```
[(null? lat) null]
[(eq? a (car lat)) (cdr lat)]
[else (cons (car lat) (s a (cdr lat))]])))
```

is the rember function and
(Y2 (lambda (s)
(lambda (a lat)
(cond
[(null? lat) null]
[(eq? a (car lat)) (s a (cdr lat))]
[else (cons (car lat) (s a (cdr lat)))]))))
is the rember-all function

The Y-Combinator shows that all recursive functions can be written in the pure lambda- calculus. Using this fact, it can be shown that the lambda-calculus is Turing Complete: Turing Machines, and hence any algorithm, can be expressed in the lambda-calculus. We have seen an algorithm for expressing any lambda-expression in terms of the combinators S and K . This means not only that the Combinatorial Calculus is Turing Complete, but that all possible algorithms can be expressed as combinations of two simple combinators: S and K. This is remarkable.

We have also shown that recursion does not require functions to be given names. Anonymous functions can be recursive! Who knew?

