

CSCI 275

Lab 01: The Basics

Due Thursday February 13 at 11:59 PM

In this lab you will create programs which put to use some of the week's topics. You'll also be

introduced to some useful new ways of thinking about Scheme code. By the end of the assignment,

you should be comfortable with

• The Dr. Racket Scheme interpreter

• Writing Scheme functions

• Using recursion with lists

Your solutions to the following exercises should all be placed in a single Scheme file with

name lab1.rkt The first line of your file should be

#lang racket

Use Handin to submit your solutions.

Part 1 - Lists of Atoms

1. Some of the most intuitive Scheme functions work with lists of atoms such as the list

(2 3 4). In this part we will write some of these functions. First, we need to rectify an

omission. Some versions of Scheme have a primitive function atom? that returns #t if its

argument is an atom and #f if it isn't; this isn’t built into Racket. Since Racket has a

primitive list? that returns #t if its argument is a list--i.e, either null or the result of a cons

operation-- we can easily write atom?. Every expression is either an atom or a list. Use

this to define function atom?. Here is some test data:

o (atom? 3) returns #t

o (atom? '(1 2)) returns #f

o (atom? null) returns #f

2. Write the lat? function from The Little Schemer. This takes an argument and returns #t if

it is the empty list or a list whose every element is an atom.

3. Write the function not-lat? that returns #t if its argument is NOT a list of atoms. Of

course, you could write this as (define not-lat? (lambda (s) (not (lat? s)))), but write it

directly using cond.

4. Write the function list-of-ints? that returns #t if its argument is empty or if its argument is

a list, each of whose entries is an integer. You can use the primitive functioninteger? for

this.

5. Compare functions lat? and list-of-ints?. The structures of these functions should look

very similar. Write function list-of-same? that takes two arguments: a predicate (which

tests a condition) and a list. (list-of-same? kind-of-element s) returns #t if s is empty or if

every element causes kind-of-element to return #t.

(list-of-same? atom? s) should be the same as (lat? s), and (list-of-same? integer?

s) should be the same as (list-of-ints? s).

6. Now rewrite list-of-same? as list-of-same2 so that it takes only one argument, a predicate,

and returns a function that takes an argument and says if the predicate returns #tfor each

element of the argument. Now (list-of-same2 atom?) is the same as lat? and (list-of-

same2 integer?) is the same as list-of-ints? This process of taking a function of two

arguments and rewriting it as a function of one argument that returns another function of

one argument is called currying the original function, named after Haskell Curry, an

important American mathematician who worked on the foundations of logic and

programming languages.

Part 2: Operations on Lists

7. Write (allmembers lat1 lat2), which returns #t if every member of lat1 is also a member

of lat2, and #f if that isn't true.

o (allmembers '(a c x) '(a b x c x d)) returns #t

o (allmembers '(a c x) '(a b c)) returns #f

o (allmembers '(a) '()) returns #f

o (allmembers '() '()) returns #t

8. Write (rember2 a lat), which removes the second occurrence of a from lat, if there is

one.

o (rember2 'x '(a b x c x d)) returns (a b x c d)

o (rember2 'x '(a b x c x d x e)) returns (a b x c d x e)

o (rember2 'x '(a b x c))) returns (a b x c)

9. Write (rember-pair a lat), which removes every occurrence of two consecutive instances

of a in lat:

o (rember-pair 'a '(a a b b c c a b c a a)) returns (b b c c a b c)

o (rember-pair 'a '(a b c a b c a)) returns (a b c a b c a)

o (rember-pair 'b (a b b b a)) returns (a b a)

o (rember-pair ''b (a b b b b a)) returns (a a)

10. Write (duplicate n exp), which builds a list containing n copies of object exp.

o (duplicate 3 'x) returns (x x x)

o (duplicate 0 'y) returns ()

o (duplicate 3 '(a b c)) returns ((a b c) (a b c) (a b c))

11. Write (largest lat) where lat is a list of numbers. Naturally, this should return the largest

value in lat.

o (largest '(4 6 3 4 5 1 2) returns 6

12. Write (index a lat) which returns the 0-based index of the first occurrence of

atom a in lat. If a is not an element of lat this returns -1.

o (index 'x '(x y z z y)) returns 0

o (index 'y '(x y z z y)) returns 1

o (index 'a '(x y z z y)) returns -1

o (index 'x '()) returns -1

