
Table-Driven Scanners

The idea of a table-driven scanner is simple -- we have a table
that says what to do if we are in one particular state and see a
particular input character. This is basically the transition
table for the DFA. Building the table can be a pain, but then
your scanner is a simple loop. The table size can be
significant (my Scanner for BPL has 35 tokens, so the DFA
needs at least 35 states; there are at least 128 possible input
characters, so you need a table with about 5,000 entries for
BPL) but even for a full implementation of C or Java it
wouldn't be too big to reside in memory.

Here is a simple example:
a table that represents a
DFA:

 Char

State 0 1 End-Of-String

Start A B Accept

A A B Accept

B B A Reject

Things get a little more complex if you have an actual scanner,
which has to find token boundaries and emit tokens. Consider
the following DFA, that represents a scanner that finds Id,
Number, + and * tokens:

We could represent this with the following table:

 Char

State letter digit + * white eof

Start Id Num Plus Times Start T_ERR

Id Id Id T_ID T_ID T_ID T_ID

Num T_NUM NUM T_NUM T_NUM T_NUM T_NUM

Plus T_PLUS T_PLUS T_PLUS T_PLUS T_PLUS T_PLUS

Times T_TIMES T_TIMES T_TIMES T_TIMES T_TIMES T_TIMES

Here a table entry Id means to go to the Id state and the next
character of the input, while an entry such as T_ID means to issue
a T_ID token and to not consume the current input character.

Some people separate this into two tables: a Transition table
for states, and an Action table that issues tokens and consumes
input.

Should you write a table-driven scanner for BPL? I wouldn't.
Scanners are not very interesting and you just want to get yours
done; it seems to me that code is easier to debug than a table.
But if you are so inclined, go for it. To write such a scanner you
will need some way to generate the table; don't try to do it by
hand.

