
Grammars

See Section 3.2 of the text

Warning -- there is a bunch of terminology ahead. It isn't hard
and you don't have to memorize it, but if you want to
understand the properties of different types of parsers and why
you might one to use one type rather than another, you have to
have some idea what this terminology means.

Here are 6 definitions:

1. An alphabet V is a finite collection of symbols, such as
{0, 1}, {"a", "b", "c", ..., "z"} or {"if", "then", "else"}

2. V* is the collection of all strings made up of 0 or more
elements of V.

3. e is the empty string -- the string of length 0
4. V+ = V*-{e}
5. A language over V is any subset of V*
6. A grammar for a language is a method for satisfying

which strings are in the language. This consists of
a. An alphabet VT of terminal symbols
b. An alphabet VN of nonterminal symbols
c. One or more start symbols in VN

d. A set of production rules for expanding strings.

The language generated by the grammar is the set of strings in
VT* that can be generated from the start symbols by following
the production rules.

Different classes of grammars (such as regular, context-free, or
context-sensitive) have different sorts of grammar rules.

An example should help. Here is a simple grammar for a language of
arithmetic expressions:
VT={0, 1, 2, 3,...,9, + *}
VN={E, T, N, D}
E is the start symbol.
Rules:
 E ::= E+T
 E ::= T
 T ::= T*N
 T ::= N
 N ::= DN
 N ::= D
 D ::= 0|1|2|...|9 (as with regular expressions, | means "or")

Here is a derivation that shows that 3+42*5 is a string in the
language generated by this grammar:
 E ::= E+T
 ::= T+T*N
 ::= N+N*N
 ::= D+DN*N
 ::= D+DD*D
 ::= 3+42*5

However, 3++4 is not in the language:
The only rule containing + is E ::= E+T, so both +-symbols
need to come from this rule:
E ::= E+T
 ::= E+T+T
There is no way for that middle T to become an empty
string, so no string in the language can have two consecutive
+-symbols.

To save space, we often write all of the rules that have the same
left side on one line, separating the right sides with |. The
previous grammar would be written

E ::= E+T | T
T ::= T*N | N
N ::= DN | D
D ::= 0 | 1 | ... | 9

In general, production rules have the form
 a ::= b

where a and b are both strings in (VTVN)*

A derivation is a sequence of steps that replaces the left side of a
production rule with the right side of this rule. We usually
continue derivations until we have derived a string of terminal
symbols.

Here is another grammar:
VT={a, b, c}
VN={S, T, U}
The start symbol is S
Rules:
 S ::= aSTU
 S ::= abU
 bT ::= bb
 bU ::= bc
 UT ::= TU
 cU ::= cc

Here is a quick derivation:

S ::= abU
 ::= abc

Here is another derivation:
S ::= aSTU
 ::= aabUTU
 ::= aabTUU
 ::= aabbUU
 ::= aabbcU
 ::= aabbcc

It isn't terribly difficult to show that this grammar generates the
language {anbncn: n>= 1}

Types of Grammars:

Regular: All production rules are either of the form A ::= a
or A ::= aB, where A and B are nonterminal symbols and a is
a terminal symbol.

Context Free: All production rules have the form A ::= a,
where A is a single nonterminal symbol and a might have
both terminals and nonterminals.

Context Sensitive: All production rules have the form
a ::= b, where |a| <= |b|

Arbitrary

Grammar Machine that Recognizes

Regular DFA

Context Free PDA (DFA+Stack)

Context Sensitive Turing Machine with bounded
memory

Arbitrary Turing Machine

The Chomsky Hierarchy

For the rest of the term we will only work with context free grammars.

More terminolgy. Be patient, we are getting through it.

A sentential form is any string in (VTVN)* that can be
derived from a start symbol. In other words a sentential
form is one step of a derivation. A sentence is a sentential
form with only terminal symbols.

A phrase is a substring of a sentential form that can be
produced from a single nonterminal symbol.

For example, with the grammar

E ::= E+T | T
T ::= T*N | N
N ::= DN | D
D ::= 0 | 1 | ... | 9

3+4 is a sentence, 3+T is a sentential form, and 4*5 is a
phrase (as well as a sentence).

Parsing is the process of taking a string of terminal symbols and
producing a derivation for it. There are 2 main styles:

LL: read the string from left to right, always expanding the left-

most nonterminal symbol.

LR: read the string from left to right, always expanding the right-

most nonterminal symbol.

We usually display a derivation as a parse tree, where a rule
such as A ::= bcd is displayed as

A

b c d

Top-down parsing builds the parse tree from the top (start
symbol) down; most top-down methods are LL.

Bottom-up parsing builds the parse tree from the leaves
(terminal symbols) up; most methods are LR.

We will look primarily at 2 parsing techniques: recursive
descent, which is top-down and LL, and table-driven LALR
parsers, which are bottom-up and LR.

