
CS 331
Spring 2016

GDB and x86-64 Assembly Language

I am not a big fan of debuggers for high-level languages. While they are undeniably useful at

times, they are no substitute for careful coding. If code is well structured, I usually find it easier

to debug analytically (i.e, by staring at it) than by running it through a debugger. In any event,

monkey-coding with a debugger is still monkey-coding, and I don’t want to fly in an airplane

being guided by monkey-code.

The situation in assembly language is quite different. Assembly instructions can be opaque,

especially if you aren’t used to programming in assembly language. In addition, I/O at the

assembly level is quite complex; printing values at various places in your code is often not an

option.. Debuggers are frequently the only way to discover what your code is actually doing.

There are nicer assemblers than the gas (gnu assembler) that we will use, but the gas-gdb

combination works quite well and is easy to use.

In this document we’ll go briefly through the essential commands for gdb. There is more

complete documentation available on any of the Linux systems; just type

 info gdb

And, of course, there is no end of documentation online.

To assemble your program with hooks for gdb use the hyphen g flag. For example, if your

assembly language program is foobar.s you would assemble it wth

 gcc foobar.s –g –o foobar

and then run gdp with

 gdb foobar

You should always have the program visible in an editor that includes line numbers while you

run gdb.

Alternatively, you can run gdb in a “graphical mode” with

 gdb –tui foobar

2

If you use the graphical mode you get two windows, one with your assembly code and the other

a “command” window into which you can type. If you click in the code window you can use the

arrow keys to scroll around in the code. When you enter commands that execute lines of code

(such as “step”) the code window shows the region of code around which you are currently

executing.

Your first step in gdb will be to set one or more breakpoints. The command is

 break <line number>

as in

 break 35

The run command starts the program; it will execute up to, but not including, the line with the

first breakpoint. The text of the next line to be executed will be printed; I don’t find this much

help unless I have a copy of the program at hand during the session.

When the program is stopped you can examine the memory. The print commands are useful for

registers:

 print/d $rax

prints the contents of register rax as a decimal number;

 print/x $rsp

prints the contents of rsp in hexadecimal.

In graphical mode you can open a window that will show the contents of all of the registers:

 layout re

shows the registers; if this opens with the wrong registers visible

 tui reg general

will focus the register window on the general purpose registers that we use for compilation.

Each register is printed both in hex and decimal format.

Values on the stack are most easily viewed with the

 x/ NFU <address>

3

command. Here N is the number of consecutive locations to be printed, F is the format, which

can be ‘d’ for decimal ‘x’ for hex, ‘t’ for binary and ‘c’ for ASCII, and U is the size of each

location, which can be ‘b’ for byte, ‘h’ for a 16-bit half-word, or ‘w’ for a 32-bit word. For

example

 x/10dw 8+$rsp

will print 10 values as integers starting 8 bytes below the stack pointer.

If you are halted at a breakpoint,

 cont

will continue the execution up to the next breakpoint, or the end of the program. Alternatively,

you can step through the program a block of instructions at a time:

 st epi 5

executes the next 5 instructions (if you omit the number, it defaults to 1);

 next i 5

does the same thing, though it steps over rather than into function calls.

Finally,

 quit

terminates the debugging session.

Here is a short table of gdb commands

4

Command Shorthand Examples Description

help [command] help break Gives information about the command

quit q quit Exit from gdb

run r run start the program; execution continutes

up to a breakpoint

cont c cont Continue execution from the current

point, until the next breakpoint is

reached

stepi <n> si <n> stepi 5

stepi

Execute the next 5 instructions,

stepping into function calls.

Note that <n> defaults to 1

nexti <n> ni <n> nexti 5

nexti

Execute the next 5 instructions,

stepping over function calls. Note that

<n> defaults to 1.

break <address> b <add> break 34 Sets a breakpoint. The <address> may

either be a label in your program or a

line number.

info break info break Gives a numbered list of all current

breakpoints.

delete <n> d <n> delete 3 Deletes the nth breakpoint. If you

omit the n all breakpoints will be

deleted.

print <expression> p/d <exp> print/d $rax

print/x $rsp

print/t $rsp

Print the value of the expression. You

can modify the command with

formats: /d for decimal integers, /x for

hexadecimal and /t for binary.

x/NFU <address> x/4dw -16+$rsp Print N consecutive values in format F

of words of size U. N should be an

integer, F either ‘d’ for decimal, ‘x’

for hex, ‘t’ for binary, and ‘c’ for

ASCII, and U should be ‘b’ for byte,

‘h’ for 16-bit half-word, and ‘w’ for

32-bit word.

display <expression> display $rax Registers the expression as something

to be printed each time the execution

is halted.

info display info display Gives a numbered list of all of the

current display expressions

undisplay <n> undisplay 3 Removes one of the current display

expressions

