More Undecidability Examples

1. Let L_{101} be the set of encodings of TMs that accept the string 101 and no other string. Is L_{101} Recursively Enumerable?

Answer: No. Reduce complement of L_u to it.

Given (M, w) we create M'. M' takes input x. If x is 101, M' accepts x. If x is not 101 M' ignores x and simulates M on w, accepting x if M accepts w.

If M accepts w, M' accepts all strings. If M' does not accept w, M' accepts only 101.

A recognizer for L_{101} will recognize if M does not accept w. Thus, a recognizer for L_{101} creates a recognizer for the complement of L_u, and we know that can’t exist.

2. L_{inf} is the set of encodings of TMs that accept infinitely many strings. Show L_{inf} is not RE. Proof: We reduce the complement of the Universal language to L_{inf}. Let (M, w) be a (TM, input) pair. Given M and w, create M': M' takes input x and simulates M on w for $|x|$ steps.

If M halts and accepts w in $|x|$ steps, M' rejects x.

If M halts and rejects w within $|x|$ steps M' accepts x.

If M is still running after $|x|$ steps M' accepts x.

If M accepts w in n steps M' rejects all x with $|x| > n$, so M' accepts only finitely many strings.

If M does not accept w and halts in n steps, then M' accepts all strings with length larger than n, so M' accepts infinite many strings.

If M does not accept w and runs forever, M' accepts all strings.

Altogether, M' accepts finitely many strings if M accepts w, and infinitely many if M does not accept w. So if we could recognize if M' accepts infinitely many strings, we could recognize if M accepts w.