A Field Guide to the Chomsky Construction of a grammar from a PDA

Notation: \([pXq] \) will generate all strings \(w \) so that \((p,w,X)^* \Rightarrow (q,e,e) \)

i.e., \([pXq]\) represents all strings that take the PDA from state \(p \) to state \(q \) while popping \(X \) off the stack.

Rule 1: \(S \Rightarrow [QZ_0p] \) where \(Q \) is the start state, \(p \) is any state

Rule 2: Suppose the PDA has transition

\[
\begin{array}{c}
\text{q} \\
\downarrow \text{a,X|Y_1...Y_k} \\
\text{r}
\end{array}
\]

Then for every sequence of \(k \) states \(r_1...r_k \)

\([qXr_k] \Rightarrow a[rY_{r_1}][r_1Y_{r_2}] ... [r_{k-1}Y_{r_k}] \)

Rule 3: If there is a transition

\[
\begin{array}{c}
\text{q} \\
\downarrow \text{a,X|e} \\
\text{r}
\end{array}
\]

then \([qXr] \Rightarrow a \)
Rule 4: Suppose there is a transition

\[
\begin{array}{c}
\text{q} \\
\overset{\epsilon, X|Y_1\cdots Y_k}{\longrightarrow}
\end{array}
\begin{array}{c}
r
\end{array}
\]

then for any sequence of states \(r_1..r_k \)

\[[qXr_k] \Rightarrow [r_1 r_1][r_2 r_2] \cdots [r_{k-1} r_k] \]

Rule 5: Suppose there is a transition

\[
\begin{array}{c}
\text{q} \\
\overset{\epsilon, X|\epsilon}{\longrightarrow}
\end{array}
\begin{array}{c}
r
\end{array}
\]

then there is a rule \([qXr] \Rightarrow \epsilon \)