ϵ -NFAs

See Section 2.5 of the text.

Here is another finite automaton -- an ε -NFA, or an NFA with ε transitions". These allow transitions labeled " ε " to be followed without consuming any input. These aren't interesting in themselves but are useful for showing that DFAs and regular expressions describe the same languages.

Example: Here is an e-NFA that accepts strings with 2 0's or 2 1's:

Formally, an ε -NFA is (Q, Σ , δ , s, F) where Q, Σ , s, and F are defined as with other NFAs and the inputs to δ are a state and either a letter in Σ or ε . This processes strings in the same way as the NFA (Σ , Q, δ' , s, F), where $\delta'(q,a)=\delta(q,a) \cup \bigcup_{q'\in \delta(q,\varepsilon)} \delta'(q',a)$. (Note that this is a recursive definition of δ' .) We are going to show that the language accepted by an ε -NFA is regular (so every ε -NFA has an equivalent DFA). To get there we need the idea of an ε -closure of a set of states. Let (Q, Σ , δ , s, F) be the ε -NFA we are talking about and let A be an set of states from Q. \overline{A} will represent the ε -closure of A. Here are two things we want to be true:

- $A \subset \overline{A}$
- For each q in \overline{A} if there is an ε -transition from q to q₁ then q₁ should be in \overline{A} .

This gives us an algorithm: to compute \overline{A} start with A and add the destinations of ε -transitions until nothing else can be added.

This accepts 1^*0+01^* Here are some ϵ -closures:

 $\overline{\{T\}} = \{T, U\} \qquad \overline{\{U\}} = \{U\}$

 $\overline{\{S\}} = \{S, T, U\} \qquad \overline{\{S, W\}} = \{S, W, T, U, X\}$

Theorem: Any language accepted by an ε -NFA is regular. **Construction**: Let (Q, Σ , δ , s, F) be an ε -NFA. We will construct an equivalent DFA (Q', Σ , δ ', s', F') :

- Q' consists of subsets of Q
- $s' = \overline{\{s\}}$
- If $P=\{q_0,q_1,...,q_k\}$ is a state in Q' and a is in Σ then $P'=\bigcup_{i=0}^k \overline{\delta(q_i,a)}$ is also a state in Q' and $\delta'(P,a)=P'$
- If P={q₀,q₁,...q_k} is a state in Q' and if any of the q_i are in F, then P is in F'.

Note that this can be simplified to:

1

We still need to prove that the DFA of this construction accepts exactly the same strings as the original ε -NFA. The proof is almost exactly the same as the proof that NFAs are equivalent to DFAs. If a string is accepted by the ε -NFA, processing the string takes the automaton through states q_0, q_1, \dots, q_k , where q_k is final. The q_i will be elements of states through which the DFA will pass while processing the string. The DFA will end in a state containing q_k, which is final, so it will accept the string.

Alternatively, if a string α takes the DFA to state $\{q_0, ..., q_j\}$ then on input α the ϵ -NFA could be in any of the q_i states. If the string is accepted by the DFA it will also take the ϵ -NFA to an accept state.