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ABSTRACT
Concept inventories (CIs) allow researchers and practitioners to
measure student conceptual learning within a course or topic area.
While they have enabled meaningful pedagogical change in other
disciplines, there are relatively few CIs in computer science. In this
paper, we report on our experiences as recent developers of a CI
for basic data structures. We discuss each step along the route to
a CI and offer tips based on what we have learned. We encourage
others to create CIs, and we hope that this paper will serve as a
practical guide through the process.
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1 INTRODUCTION
As computer science (CS) matures as a discipline and technology
becomes increasingly pervasive in society, the expectations for
CS graduates have never been higher. As CS instructors, we make
every effort to maximize student learning — but how can we reliably
measure the effectiveness of our learning interventions?

A concept inventory (CI) is an assessment designed to measure
student conceptual understanding of a course. Unlike a traditional
metric of student learning, such as an exam or course grade, a CI
is not designed to assess individual students. Rather, a CI enables
comparisons of student learning across instructors, institutions,
curricula, and instructional techniques [1]. CIs empower educa-
tion researchers to reliably measure the effects of interventions on
student learning, and they allow practitioners to identify areas in
which their students are struggling.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366903

In other disciplines such as physics, CIs have inspired wide-
spread change in pedagogy and facilitated large-scale studies with
thousands of students [7, 13]. However, within computer science,
only two validated CIs are widely available [15, 21]. We recently
developed a third: a concept inventory for basic data structures
(a subset of CS 2) [24]1. This paper describes our work building
that instrument. At each step we explore the CI design space in
the context of the lessons we learned. We hope that our experi-
ences will concretize the CI development process and spur future
CI development in other areas of CS.

2 BACKGROUND AND RELATEDWORK
A conception describes a belief, theory, or description previously
developed to explain some behavior observed in the world. When
these beliefs conflict with accepted scientific theories, they become
misconceptions. One way to study student conceptions is to carefully
devise a question that, answered correctly, provides a high degree
of confidence in the student’s mastery. Conversely, answering in-
correctly may indicate misconceptions, particularly if a student
demonstrates a consistent pattern of incorrectness across a collec-
tion of related questions. Such a collection of questions and their
corresponding answers is referred to as a concept inventory (CI).

Concept inventories emerged from the physics education com-
munity, where the Force Concept Inventory (FCI) was created
in response to the observation that students could successfully
solve mathematical physics problems without adjusting their basic
(mis)conceptions of how the world worked [16]. The FCI sparked
widespread change in physics education and inspired the devel-
opment of Peer Instruction [7]. The success of the FCI motivated
the development of CIs in many other STEM disciplines, includ-
ing chemistry [19], engineering [31], genetics [27], statistics [28],
calculus [10], geoscience [20], oceanography [3], nursing [25], as-
tronomy [4, 26, 35], and biology [9].

In contrast, few CIs have been developed in computer science
thus far [29]. Tew and Guzdial developed the FCS1, a CI for in-
troductory programming [30]. However, the FCS1 is not generally
available, which led to the development of the Second CS1 Assess-
ment (SCS1), an isomorphic version of the FCS1 [21]. Additionally,
Herman et al. [15] developed a CI for digital logic.

While other efforts explore preliminary work towards CI devel-
opment for more advanced areas of CS, including algorithms [8, 11],
recursion [14], advanced data structures [17], computer architec-
ture [22], and operating systems [32], these efforts remain incom-
plete or lack rigorous validation.

Overall, the relative paucity of validated CIs for computer science,
especially in advanced topics, represents both an area of great
potential and a considerable need for the CS education community.
1Available at https://groups.google.com/forum/#!forum/cs2-bdsi-concept-inventory
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3 CI DEVELOPMENT OVERVIEW
Typically, a team looking to build a CI has a particular topic or
course in mind for which they wish to measure student learning.
Our team focused on data structures content often found in “CS 2”
courses. CS 2 covers core concepts that CS students use through-
out their education (and their careers), typically including data
structures, complexity analysis, object-oriented programming, and
recursion. CS 2 is taught in nearly every CS program at least once
a year. It’s typically required for every CS major and minor, and it
often serves many other non-CS students. Moreover, while many
courses in CS continue to fluctuate as technology changes and new
programming languages and platforms are developed, CS 2’s core
concepts have remained relatively static, ensuring applicability of
a CI well into the future.

Before starting CI development, we worked as a team to de-
termine the likely users of the CI and their needs. We decided
to target three likely audiences: computing education researchers
studying the impact of pedagogical, curricular, or tool changes; cur-
riculum designers evaluating end-of-course knowledge relative to
later course prerequisites; and CS 2 instructors measuring student
learning in their courses. We also worked to determine measures of
validity for the CI, specifically focusing on the claims we hoped to
make to convince each audience that the CI would work for their
purposes. The ultimate claims of validity and evidence gathered in
support of those claims for this CI are provided in prior work [24].

Having established our goals, we looked to work by Adams and
Wieman to guide us in our CI development [1]. Their work distills
the development of numerous earlier CIs in a variety of science
fields and lays out a systematic procedure for applying their design
principles in other contexts. In particular, it describes six steps for
building a CI. We collapsed two steps of their model (their step 2
and 3 into our step 2) by developing open-ended questions based
on instructor knowledge of how students struggle with topics. We
then interviewed students using these initial open-ended questions.
This change ultimately yielded the following development process:

(1) Establish topics that are important to teachers.
(2) Develop a set of open-ended questions on these topics.
(3) Interview students and offer open-ended practice exams to

discover misconceptions in order to convert questions into
a forced-choice or select-all format.

(4) Carry out validation interviews at a variety of institutions.
(5) Statistically validate the CI.

Subsequent sections describe each of these steps in detail.We also
discuss administration for question development in Section 7 and
statistical validation in Section 9, and we offer recommendations
for administering the complete CI in Section 10.

4 ASSEMBLING A TEAM
Our primary project team included five people designated as “princi-
pal investigators” (PIs) for an NSF grant, two consultants (one is the
grant’s external evaluator), and one graduate student. Three of the
PIs, both of the consultants, and the graduate student work at large
research-oriented public universities; the other two PIs come from
highly selective private colleges with small student populations.
Team background thus skewed toward research institutions.

Our external evaluator on the grant also served in a significant
advisory role. We solicited her support as she previously designed
the Colorado Upper-Division Electrostatics diagnostic [6] and has a
strong background in assessment design and the learning sciences.
Where appropriate, she brought in outside advisors to help us with
specific project goals (e.g., to aid in statistical validation). Overall,
this type of guidance proved invaluable as she was able to help
us through difficult questions (e.g., how much of a course needs
to be covered by a CI, how can the team tell when the questions
are polished enough to move to validation, how do we help foster
future adoption of the instrument, etc.). We strongly recommend
that any team without direct experience in CI construction employ
someone with this kind of expertise to help ensure project success.

Because a CI serves as a standard assessment instrument for
a course, it must be representative of a diverse set of concerns
regarding the course material and presentation. To go beyond what
the PIs represent, we assembled a separate “expert panel” of eight CS
instructors with a variety of backgrounds and skills, drawn from our
professional connections. We tried to select experts with a variety
of institutional demographics (small vs. large enrollments, public
vs. private, community college vs. four-year teaching institution vs.
four-year research institution) and pedagogy-related characteristics
(experience teaching CS 2, experience teaching follow-on courses,
topics covered and activities used in CS 2). Although we recruited
panelists only from North America, developers may want to include
more global representation if the course is consistent world-wide.

We offered each of our expert panelists an honorarium for their
participation in the project. As we will discuss throughout the
paper, these experts helped us determine the core concepts for the
CI, provided guidance as to which learning goals are most critical,
and contributed feedback regarding the suitability of our questions
for testing expert-level thinking.

4.1 Lessons Learned: Expert Panel
We learned two important lessons working with the expert panel.
First, we strongly benefited from selecting panelists who regularly
attend the same annual conference as the PIs (in our case, the
SIGCSE symposium). The conference represented a de facto meet-
ing venue where everyone was prepared to discuss CI development
topics. Second, it’s critically important to respect the expert pan-
elists’ time. They should only be approached for activities that the
primary project team can’t perform on their own (e.g., to collect a
broader perspective on a topic). We characterize the requests we
made to our expert panel at each step in the sections that follow.

While we are indebted to our expert panel for their essential con-
tributions, we can’t claim to provide a specific formula for selecting
panelists. We recognize many unresolved and nuanced considera-
tions when choosing panelists. For example, how should PIs factor
in a prospective panelist’s likelihood of long-term collaboration,
and should they be chosen based on past experiences working with
them? Is it better for the PIs to optimize a panel for diversity, topic
expertise and experience, or prior assessment authorship?

5 STEP 1: ESTABLISHING TOPICS
In preparation for the project, we spent several months collecting
and reviewing course syllabi to discern which topics are commonly
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taught in CS 2. Our analysis ultimately found that variations of CS
2 typically teach content in six topics: sorting, recursion, basic data
structures, advanced data structures, object-oriented programming,
and reasoning about code. Once the project started in earnest, we
did a more careful analysis based on materials collected from PIs
and our expert panel, including course descriptions, syllabi, ex-
ams, quizzes, solutions, and grading standards. Information about
prerequisite and postrequisite courses was also useful. We used
the subtopics covered in these documents to perform a more fine-
grained evaluation of topics taught in CS 2.

Reading through the provided materials, we created a list of 49
subtopics covered in CS 2. To ensure our high-level groupings were
accurate, we then sought to assign each of these 49 subtopics to
one of our six topics. We found that each subtopic fell cleanly into
one topic. To determine how important each of these topics was,
we then asked our expert panel the following survey questions:

• How critical are the following topics for students’ success in
your CS 2 class?

• How important is it for students to know the content of the
following topics as prerequisites for courses that follow your
CS 2 class?

• How difficult is it for students to learn the following topics
in your CS 2 class?

After our discussions with the panel, it became clear that while
all CS 2 courses covered some subset of these topic groups, no CS 2
course covered all of them. In fact, there seemed to be two flavors
of CS 2: one with a heavy emphasis on data structures, the other
on object-oriented programming. Additionally, the entire range of
CS 2 topics was far too broad for a single CI. This was a moment
where our external evaluator was particularly helpful. She advised
us that CI designers often think they need full course coverage
when, in practice, the goals of a CI can be met by instead focusing
on a portion (e.g. 60%) of course content.

We were encouraged to find that all of the courses we looked
at covered the topics we classified as basic data structures, that
basic data structures were often a significant portion of the course,
and that the expert panel felt basic data structures were important
for student success in CS 2 and follow-on courses. As a result, we
narrowed our focus to a CI just for the topics within that group (10
of our original 49 subtopics; see [23]).

We note the existence of an established alternative for isolating
course topics, specifically the Delphi process [12]. Delphi involves
experts iteratively gathering and merging opinions. We elected to
use our process instead because we felt confident that we could
gain consensus among our team of experts and that each expert
would make their voice heard without the need of a formalized
process for eliciting contributions.

5.1 Learning Goals
Next, we converted topics to learning goals, statements of the form
“after studying this topic, students will be able to ...". Based on expert-
panel responses and short-answer exercises drawn from old exams,
we devised a list of eleven learning goals. Panel members rated the
difficulty and importance of each goal in the list.

Wemet with the expert panel in person at SIGCSE 2016 to discuss
the eleven goals. Discussion yielded a number of changes, and

we consequently consolidated our goals to a list of six. We were
advised by our external evaluator that 6 goals was appropriate given
the focus and depth of our assessment; many other CI projects
have between 4 and 10 course-level learning goals that they seek
to address [2, 4, 5, 16, 27, 31]. More details about our topics and
learning goals are available in prior work [23].

5.2 Lessons Learned: Finding Topics and Goals
Many of our original goals were of a form similar to “Implement
insertion into, location in, and deletion from a binary search tree.”
This style led to many similar, repetitive goals, where the only dif-
ference between goals was the data structure used. We realized that
our misstep in designing the learning goals was coupling general
data structures concepts to specific data structures. To solve this
problem, we decoupled the learning goals themselves from any spe-
cific data structures, which allowed us to consolidate learning goals
for different data structures into a single goal. For example, one such
goal is now “Design and modify data structures capable of insertion,
selection, search, and related operations.” Ultimately, we produced a
set of these broad learning goals together with a separate list of the
particular data structure interfaces and implementations covered
in the CI.

There was some contention among our experts about whether
students should be able to select the appropriate interface, select
the appropriate implementation, or implement the data structures
themselves. Some instructors argued strongly that their students
only needed to be able to choose an appropriate data structure to
use in a program, while others focused entirely on data structure
implementation. The group eventually concluded that students
should be able to do all three to some degree, and these became our
first three learning goals.

6 STEP 2: OPEN-ENDED QUESTIONS
During the prior step, we collected a number of short-answer ex-
ercises from old exams, both from our team and the expert panel.
Collectively, we also have a substantial body of expertise in teach-
ing CS 2; one of us had taught it more than 20 times (in traditional,
self-paced, and lab-centric formats), producing a considerable col-
lection of course material. We also used two exercises created by
Karpierz and Wolfman [17]. We selected the subset of exercises
appropriate for basic data structures and interviewed with those.

To prepare us for the interview process, our external evaluator
ran a two-day workshop on conducting cognitive interviews [34]
for assessment design. In this workshop, she discussed how to
conduct interviews and brought in students from her campus to
help us practice interview techniques. Three PIs and one consultant
participated.

The logistics of interviewing students was more onerous than
anticipated. We began by recruiting interviewees via announce-
ments in the CS 2 courses at our universities. We interviewed fifty
students across three institutions for steps 2 and 3. Students were
offered an Amazon gift card for participating. While we tried to
interview a diverse set of students, self-selection may have biased
us towards students who were more confident in their abilities.
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Aswe needed students to have been exposed to all of the material
covered in the CI, we faced a relatively short window of approxi-
mately the last two weeks of the term in which to do interviews.
This meant that in some cases, we would make changes based on
student interviews only to then have to wait until the following
term to do more interviews to get feedback on these changes.

Scheduling interviews proved challenging, as 10–20% of students
who initially expressed interest failed to show up for their appoint-
ments. Asking the students to email us to confirm their interest
after an initial signup, as well as emailing them a reminder the day
before the interview, helped to increase participation.

Each 1-hour interview included reviewing the Human Subjects
consent form, an ice-breaker discussion about courses to help make
the student comfortable, talking through the nature of think-aloud
interviews, and then having the student work through our draft
questions. At the beginning, we warned participants that we would
intentionally not be engaging them with verbal or non-verbal feed-
back as they worked through the problems. Not providing feedback
to students was difficult for us because, as instructors, we found our-
selves instinctively wanting to encourage students as they thought
through the problem correctly or wanting to probe incorrect think-
ing. However, it was important not to provide this kind of feedback
if we wanted to ascertain student thinking.

As students worked through questions, we did not intervene
(except to ask them to think aloud if they were quiet). But when
they finished a question, we often asked them what they were
thinking about while solving the question. These dialogues were a
particularly rich source of information for the team when students
encountered unexpected difficulties (e.g., attempting to perform bi-
nary search on a doubly-linked list). These new difficulties informed
our creation of new distractors for that question and sometimes led
us to develop an altogether new question targeting a difficulty. We
also made a number of grammatical and word changes to increase
each exercise’s clarity.

Interviews typically involved two interviewers, one for note
taking and the other for interviewing. Notes were taken during the
interview on each question. The project team or a subset met daily
during interviews to make changes to questions addressing what
was seen.

For example, as we interviewed, we discovered that some ques-
tions were too easy, and others were too difficult, and so we elim-
inated those. We also developed new questions based on student
struggles and misconceptions we observed, and revised existing
questions for proper interpretation. Once we had a sufficient num-
ber of working questions, we coded them for the learning goals and
data structures they primarily covered and any additional learning
goals they touched on. Each question was independently coded by
two different team members, and then the two coders discussed
and came to consensus on which learning goals it covered. We then
developed new questions for any learning goals and data structures
that did not have coverage.

6.1 Lessons Learned: Question Development
We quickly recognized a tension between the coverage of the CI
and the time it takes to administer it. We felt that it was important
for instructors to be able to give the CI in a standard 50-minute class

session, which limited our coverage to some extent. For example,
we do not have questions for every learning goal for every data
structure, but we do cover all learning goals and all data structures.
This compromise fit the goals of the CI — unlike a final exam, a CI
does not need to cover all of the material of the course, but rather
the most important conceptual core of the course.

Organizing and keeping track of different versions of questions
with six people developing and interviewing was extremely difficult.
We used a shared Google drive with a folder for each question and
a Google document for each version of the question within a folder.
However, it was still challenging for us to sync up, especially as
the collection of questions we were using at any time were non-
consecutively numbered. (For example, our notes from this time
record that we had two different questions referred to by the num-
ber 33.) This became even more complicated as we started having
students take different versions of the CI – the set of questions (and
question versions) we were currently using became non-trivial to
keep track of, and resulted in interviews that sometimes used the
wrong versions of questions. We recommend that changes made
to questions should be tracked so that the team can recall why
particular wording changes were made. In sum, we strongly recom-
mend having a process for organizing materials and handling these
versioning issues (e.g., a versioning control system of some form).

We discarded far more questions than ended up on the CI. We
developed 43 questions, with many questions having multiple ver-
sions. Ultimately, 13 working questions made the cut for our final
CI. This points both to the importance of our student interviews,
which weeded out 30 problematic questions, and to the need for a
large set of potential questions.

7 STEP 3: CONVERTING TO MULTIPLE
CHOICE QUESTIONS

For the next task, we converted the existing short-answer exercises
intomultiple-choice exercises where distractor answers represented
common misconceptions. To discover these misconceptions and
better understand student interpretation of the questions, we com-
bined student interview data with a broader set of student responses
from large-scale “study sessions”. We held these study sessions at 2
institutions, for a total of 408 student responses.

These optional sessions were usually held in the evening or as
part of a discussion or lab section led by Teaching Assistants (TAs).
Students took the test, TAs collected it, and then the TAs went over
the correct answers with the students. These tests included open-
ended questions and multiple-choice questions with an “explain
your answer” section added. This “explain your answer” section
both let us clarify distractor answers and reassured us that students
were choosing answers for the correct reasons.

After we collected the tests, we used Gradescope2 to code the
student answers. We adapted common incorrect answers into dis-
tractor answers for the multiple-choice versions of our questions.
We also replaced distractor answers that were infrequently chosen
and revised questions that were too easy or too difficult.

During this period, we met twice with our expert panel to solicit
feedback about our questions. Specifically, we wanted to make sure
2From www.gradescope.com: “Gradescope is an assessment platform that reduces the
time associated with grading in college courses via an optimized online workflow and
clever application of artificial intelligence."
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that they felt that our questions were both asking about concepts
they felt were important and were of a difficulty level they felt
was appropriate. Our first meeting yielded large changes to our
questions, while the second meeting, which occurred after most of
our interviewing, resulted in general approval of our questions.

7.1 Lessons Learned: Multiple Choice
It is worth noting that although we present the development of
open-ended questions, the development of distractor answers, and
the finalization of question wording as separate processes, they
overlapped considerably. At many points in time, we had a collec-
tion of questions, some of which were still open-ended, some of
which were multiple-choice but without a finalized wording and set
of distractors, and some of which were finalized except for being
polished. In one interview or test session we might be collecting
new distractor answers for some questions, while checking the
wording on more developed questions. Additionally, at some points
questions that we thought were almost done were discovered to
have some fatal flaw, which would require a complete redesign and
restarting the interview process for that question.

The process of converting questions from open-ended tomultiple-
choice yielded surprising consequences as it effectively converted
an application, analysis, synthesis, or evaluation question into a
recognition question. This was somewhat incompatible with our
learning goals, as questions with the goal “Design and modify data
structures capable of insertion, selection, search, and related op-
erations,” when implemented in a multiple-choice format where
students were choosing the correct code, became closer to those
with the goal “Trace through and predict the behavior of algorithms
(including code) designed to implement data structure operations.”

We also found that in some cases, students frequently made mis-
take X on an open-ended version of a question, but rarely selected
mistake X as a multiple-choice distractor. A good example appeared
when students performed recursion on a binary tree: on the open-
ended question, students often checked if the right child of a node
was not null, and if so, returned the result of a recursive call to the
right; then checked if the left child was not equal to null, and if
so, returned the result of a recursive call to the left. This results in
recursion to only the right side of the tree when both children exist.
However, when this was offered as a distractor answer, students
rarely selected it as a correct answer. Another tricky problem was
one where we asked students to deduce whether an unknown im-
plementation of a linked list (for example, one in a Java library) was
a singly- or doubly-linked list. In the open-ended version, students
frequently answered with “You can just look at the source code
and check if node.prev exists” despite the fact that they would
not have access to the source code in the scenario we described.
However, when we converted this to a multiple-choice question,
during interviews it became clear that having a distractor answer
that involved checking the source code made students believe that
they did have access to the source code in the scenario. We eventu-
ally eliminated this distractor answer because we felt that we could
not include it without it being misleading.

For more about the student misconceptions we uncovered during
our interview process, see our prior work [36].

8 STEP 4: VALIDATION INTERVIEWS
Next, we needed to ensure that students were interpreting the
questions correctly and that the CI was successfully differentiating
between students who understood the covered concepts and those
who did not.

Numerous sources of guidelines provide support for testing with
multiple-choice questions. Our criteria are aptly summarized in
this excerpt from Kelly [18]: “(a) the item should be interpreted by
all students in the same way; (b) the item should target a single
problem so that its answer would be completely right or completely
wrong, and not partly right and partly wrong; and (c) the difficulty
level of the item should not depend on either obscure words or
unintentional cues in the stem.”

In order to determine if students were correctly interpreting CI
questions, we held two rounds of validation interviews with 49
students across 5 institutions. In these interviews, students worked
their way through the entire CI while thinking aloud. Interviewers
did not interact with the students other than to prompt them to
continue narrating their thoughts if they fell silent. We were espe-
cially alert to signs that students might pick correct answers for
a question using incorrect logic or select incorrect answers using
logic that was conceptually sound.

Each round of our validation interviews prompted revisions.
The first round produced substantive changes and hence we felt
it necessary to conduct another round of interviews. The second
round produced only minor changes to the questions, so we felt
comfortable moving forward without additional interviews.

8.1 Lessons Learned: Validation Interviews
Validation interviews were instructive and helped us understand
when questions needed substantial revision, or in some cases, re-
moval. Such an example of a fatal flaw caught in validation is a
question where we told students to imagine a data structure that
stored items as key-value pairs, where the key was an integer value
that could be negative. We asked students to choose the data struc-
tures that would provide the best performance for implementing a
get method. The correct answers were binary trees, which offered
O(logn) time, and arrays, which could be searched inO(logn) time
assuming pairs were inserted in key order. When we did validation
interviews on this question, we discovered that both students who
did very poorly overall and students who performed very well over
all were choosing the array as the only correct answer, and claiming
it had anO(1) runtime. Students who performed very poorly overall
assumed that anything with an integer key could be inserted into an
array and then indexed by that integer (i.e. they were assuming that
array[-2] was a valid operation). High-performing students cir-
cumvented the original intent behind the question by organizing
data into an array in a manner that was extremely space inefficient
but provided constant-time access. Adding a space constraint to
the question made it too complex, so we ultimately removed it.

9 STEP 5: STATISTICAL VALIDATION
We were guided in our selection of statistical methods by our exter-
nal evaluator, another evaluator she referred us to, and by recent
work in CS education on other CIs.We referred to Chasteen et al. [6]
as a general guide for how to statistically validate a CI, and then
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consulted recent work by Xie et al. [33] as an example of validating
a computer science CI. Guided by both of these works, we applied
both Classical Test Theory (CTT) and Item Response Theory (IRT).
Classical Test Theory provides metrics such as item discrimination
and item difficulty that can be used to discover poorly-performing
questions. However, its results are dependent on the population
taking the CI, so every run must be analyzed individually. Item
Response Theory is more robust to population differences, but the
data must meet more strict assumptions in order for it to be valid.

To statistically validate our CI, we initially administered it at
8 institutions, including liberal arts schools, community colleges,
primarily undergraduate institutions, and research institutions. We
used the data from all of them for our difficulty statistics. However,
not every run had enough participants to be statistically valid for
our other metrics. The smallest run that had a large enough sample
to be statistically valid had 64 participants. To create a statistically
valid sample that equally represented all four institutions with a
sufficient sample size, we combined our sample run with 64 par-
ticipants with 64 participants selected at random from each of the
other 4 institutions and used this as our sample.

Unfortunately, there were two questions that required small
changes after our large-scale run. We re-ran the CI at three in-
stitutions: two R1s and a small liberal arts school. Of these runs,
only one had sufficient sample size to be statistically valid for most
of our measures. These measures served to confirm our previous
statistical validation, and demonstrate that our changes did not
undermine the statistical validity of the CI.

One measure we evaluated was item correctness, as we want
questions to vary in difficulty. This requirement was based on our
discussions with our expert panel, who had expressed concerns
about the exam being either too easy or too difficult. Based on our
interviews and open-ended runs to construct the distractors, we
already had a good deal of evidence to suggest that our questions
ranged widely in difficulty. We confirmed this intuition when we
ran the instrument at a wide variety of institution types and found
that while performance on individual questions varied from school
to school, in general some questions were more difficult and some
were less difficult. Our average correctness for questions varied
from 18% of students answering the hardest question correctly
to 82% answering the easiest question correctly. For more on our
statistical analysis, see our prior work [24].

9.1 Lessons Learned: Statistical Validation
It can be difficult to both represent a variety of institutions (com-
munity colleges, small liberal arts schools, research institutions)
and have large sample sizes, as some institutions by nature will
have small class sizes. We found that the literature is not uniform
on which statistics to run, what cutoffs to use, why validating CIs
is different than validating other tests, why certain statistics do
or do not have merit, and so on. We suggest documenting your
decision-making process and offering your readers rationale and
interpretation for each statistic that you present.

10 ADMINISTERING THE CI
Once a CI has been designed and validated, hopefully instructors
and researchers will begin administering it. This raises the issue

of how to properly administer a CI to a class. In this section, we
describe what we learned from our administration of the CI through-
out the development process.

Consider, for example, exam administration in a large-enrollment
course, with multiple sessions. Given that there is no single session
where all students are in the same room, should the exam be given in
lecture, or in discussion, or in lab, or in some separately-scheduled
room? Whatever the choice, there is the possibility of test-takers
gaining access to the answers supplied in an earlier session.

An instructor must also decide how much the CI results should
“count” in the course final grade, where options include:

• Volunteer (students get no credit for completing the CI)
• Extra credit (correct answers count toward the course grade,
or participation counts for a set amount)

• Points count the same as any other points

Ideally, students are motivated to take the CI — say, by billing it
as a review session for a class exam — but are not tempted to cheat.
An optional review session may result in only highly-motivated
students taking the CI, which will not produce an accurate assess-
ment of students’ knowledge. A review session given in a lecture
or lab session has the advantage of encouraging students to take
the CI without motivating them to cheat.

It may be difficult for researchers to find populations (outside of
their own courses) in which to run the CI. We relied on our personal
connections to find appropriate classes. We caution that this should
be done sparingly, as the administration and bookkeeping time
costs can add up. We are grateful to our colleagues for printing
exams, supervising the students, offering value to the students in
terms of reviewing the responses and misconceptions, and getting
the data back to us.

11 CONCLUSION
Developing a concept inventory (CI) is an ambitious and time-
consuming endeavor. However, a well-designed, validated CI can
be invaluable to the research community in allowing a comparable
measure of student learning across instructors, student populations,
and pedagogies. Moreover, developing the CI will require estab-
lishing instructor consensus on course topics and learning goals,
and student misconceptions on concepts. Both are valuable in their
own right. While designing a CI may seem daunting, we hope this
paper offers a road map and friendly advice to those interested in
CI development. There are many CIs to be designed for computer
science, and existing CIs to validate for new contexts and purposes.
We hope you’ll join in.
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