
Performance Aspects of Data Transfer in a New Networked I/O Architecture

Cynthia Taylor
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
cbtaylor@cs.ucsd.edu

Joseph Pasquale
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
pasquale@cs.ucsd.edu

Abstract—We present performance results of a new dis-
tributed I/O software architecture to support remote appli-
cations interacting with local I/O devices. The architecture
emphasizes network transparency and ease of customiza-
tion/extensibility in support of the vastly different needs of
various applications and devices that can benefit from remote
I/O. Networked I/O is achieved via a networked device driver
that is split into two parts, one on each side of the network.
An I/O stream that is sourced at one end and sinked at the
other may be modified by a set of pipelined transformation
modules. Each module comes in a pair, one on each side of
the network, with one side typically applying some operation
and the other side applying a corresponding one, such as
encoding and decoding the format of the data or pausing
and resuming the sending of messages. Because of the paired
nature of transformation modules, the system is capable of
supporting the modification of the I/O stream in a variety
of ways to compensate for network issues, one of the key
problems of remote I/O, while remaining transparent to the
application. We show that even with an implementation that
operates almost entirely at user level (i.e., outside the operating
system), good levels of performance that are adequate for even
high intensity I/O, both in terms of efficiency and throughput,
can be achieved.

I. INTRODUCTION

In this work, we evaluate the performance of a new system
software architecture where devices can communicate over
the network with applications transparently, without appli-
cations having to be specifically designed for networked
use. This is especially relevant to cloud computing, as
it allows applications running in virtual machines in the
cloud to easily communicate with I/O devices on a user’s
device. Legacy applications that were designed to run with
devices locally are able to run in this system with no
modification. The architecture is based on the concept of a
networked device driver, in which a device driver is split
into two halves, one half running on the client with the
device, and the other half on the server with the application.
Network communications occurs between the two halves,
transparent to both the device and application. Each side
can be enhanced by transformation modules, which modify
the I/O stream.

Our architecture promotes ease of customization and
extensibility (to support new devices). With this in mind, we

designed the system to run primarily at user level, rather than
within the operating system kernel. This avoids the security
issues that come with allowing arbitrary code within the
kernel, and allows someone writing modules for our system
to leverage existing mechanisms provided by the operating
system, such as blocking I/O calls. Our decision to run at
the user level required care to ensure that the implemen-
tation was not creating significant performance overhead,
especially with large updates (i.e., transferring large amounts
of data between the modules in our system), and many trans-
formation modules (that require many memory copies per
update). Consequently, we provide two different mechanisms
for transferring data between the system – one using pipes
and one using shared memory – and show that high levels of
performance are achievable, even with using standard pipes.

II. RELATED WORK

X-Windows and VNC are two classic thin client sys-
tems [1], [2]. Both of them allow remote I/O data to be
forwarded over the network. However, both are designed to
primarily support the standard devices of mouse, keyboard,
and video data. In addition, in the case of X-windows,
applications must be written specifically for the X-windows
system in order to use it.

USB/IP sends device information at the driver level, al-
lowing any USB device to work with the system [3]. This has
the advantages of both transparency and full functionality.
However, there is no way to change the behavior of different
devices to account for the network or control how different
updates are sent. THINC [4] and CameraCast [5] both use
logical drivers in systems designed for video data being sent
over a network. While both of these systems are focused on
specific devices, the concept of a logical driver and the use
of intermediate processing modules is important for remote
I/O.

The classic work using modules to modify data between
devices and applications is the UNIX Streams system [6].
More recently, there are many systems that create distributed
environments for processing device input data for specific
domains, where applications are written for these environ-
ments, and input data is passed through a series of processing
“filters”. These include the Berkeley Continuous Media



server 

networked device driver 

client 

device 

device 
driver 

device 
module network 

module 
network 
module 

network 
card 

network 
card 

application 
module 

application 

network 

networked device driver 
trans 1 trans N … trans N’ trans 1’ … 

Figure 1. The networked device driver architecture. All device and
network-related processing are encapsulated within the networked device
driver, which operates on each side of the network.

Toolkit for distributed multimedia applications, Cascades for
sensor networks, and a variety of systems for virtual reality
applications, including Open Tracker [7], [8], [9], [10], [11].

We build on the ideas of these systems, integrating the
network as a central object (whereby modules operate on
each side of the network), and we use a mostly user-level
implementation for maximum flexibility, portability and ease
of implementation.

III. SYSTEM ARCHITECTURE

A. Architecture Summary

The central abstraction of our system is the networked
device driver, shown in Fig. 1. By using the device driver as
our central abstraction, we preserve transparency. Messages
are created by either device or application, passed through
half of the network device driver, which transforms them
in some way, and sent to the network. Once across the
network, they are read in by the network device driver,
the transformations are reversed, and they are sent to their
destination.

The system consists of four different types of modules.
The device communication module collects messages from
the device, packages them into the networked device driver
message format, and forwards them to the next module. The
application communication module communicates with the
application, imitating the original driver for the device. Net-
work modules transmit updates across the network. Optional
transformation modules modify updates, changing them to
compensate for the network. These modules are described
in more detail in [12].

B. Transformation Modules

Messages travel through a set of optional transformation
modules on either side of the networked device driver. These
modules allow for the addition of extra functionality and
compensation for the behavior of the network, while still
preserving transparency. Each module performs a specific
task, such as averaging, buffering, bundling, compression,
encryption, etc. Modules vary in generality: some require

specific syntactic or semantic knowledge about the messages
they are transforming, and thus must be written for a specific
device, while others are more generic and can work with any
device.

Any change made to the format of a message on the
client must be reversed on the server in order to preserve
transparency. This undoing must be performed in the reverse
order of the original transformations: if a message is en-
crypted and then compressed, it must be decompressed and
then decrypted. Consequently, transformation modules are
considered as pairs, consisting of an original transformation
and its reversal. Pairs may exchange out-of-band messages,
thus allowing for the communication of control information
about how to process messages.

IV. IMPLEMENTATION

We wish to make it easy to create new networked device
drivers, or customize them to suit a user’s individual needs.
To support this, our system is implemented almost entirely
at the user level, to avoid running arbitrary code within
the kernel, which is dangerous both because processes may
create system failures on errors, and processes within the
kernel may be able to maliciously affect the system. Each
module is implemented as a separate process, allowing the
use of the kernel’s existing scheduler, and allowing processes
to naturally block when there are no waiting messages for
them to process. Our implementation is based on Linux,
although the operating system mechanisms we rely on are
found in most operating systems.

A. Implementation with Pipes

In our pipe-based implementation, all links between mod-
ules in the data stream are created with pipes. Each transfor-
mation module has a read pipe and a write pipe. It reads a
message from the read pipe, performs some transformation
on the data, and then writes it to the write pipe. Specifying
the read and write pipe allows us to order the modules,
e.g., if the compression module writes to pipe A and the
encryption module reads from pipe A, messages will be
compressed and then encrypted. Each message starts with
a fixed length header field containing the message content’s
length, so variable sized messages can be read and written
within the same data stream.

B. Implementation with Shared Memory

In our shared memory implementation, a large pool of
memory is simply memory mapped between all of the
modules in the networked device driver. Updates are written
to the shared memory by the device communication mod-
ule on the device side, with multiple updates kept in the
memory pool at the same time. Each update is modified
by each transformation module in order, with all changes
occurring within the shared memory. When the update has
gone through all the transformation modules, the network



module reads it from the shared memory, writes it to the
network, and sends a message to the device communication
module letting it know the area of memory occupied by the
update is now available to be written over. Similarly, on the
application side, the network module reads in an update,
and then writes it to the shared memory pool, where it is
modified by the transformation modules. When it is read
by the application communication module, the latter sends
a message to the network module, letting it know that space
in memory is now available.

To synchronize between the modules, we have a system
of pipes similar to the implementation described in Section
IV-A, but used purely for synchronization. When a module is
done processing an update, it writes the starting address and
size of the update to the next module in the data stream,
signaling that the next module is now the owner of that
region of the shared memory.

C. Using Pipes versus Shared Memory

Pipes generally provide a more natural and flexible in-
terface than shared memory. Using pipes automatically pro-
vides support for messages that change size while traveling
through the data stream, such as in compression, messages
that are combined, such as in bundling, and the additional
headers that are added and removed by many transformation
modules. When using shared memory, the module creator
must keep track of the memory used so that it can eventually
be reported as free by the network module once the message
has been sent to the network, and then reused by the device
communication module. This becomes more complicated
when the size of the message changes across modules (from
when the message was created by the device communication
module to when it reaches the network module). This
becomes even more complicated when the message changes
size over time. It is clear that pipes are easier to use,
though the question remains whether memory copying –
an unavoidable result when using pipes but avoidable when
using shared memory – creates intolerable overhead. We
address this question in Section V.

V. PERFORMANCE

To demonstrate that our user-level implementation does
not cause an undue amount of overhead, we tested two
implementations that use different ways of passing data
between modules, one using pipes and one using shared
memory. All tests are performed on a two Dell Optiplex
320 machines with dual-core Intel Celeron Chips and 133
MHz FSB clocks. We used these machines because they are
examples of relatively inexpensive off-the-shelf hardware.
Both machines are running Ubuntu Linux. Both machines
have wired connections to a relatively fast campus network,
with a sample ping round-trip time of 0.235 msec.

A. Performance of Pipes

To test the overhead of adding additional modules using
pipes, we created a transformation module that simply reads
from an input pipe, and writes to an output pipe, performing
no computation on the data (allowing us to focus purely on
communication overhead). We used the video card network
device driver to send various sized frames of video through
a range of multiple copies of the simple transformation mod-
ule. We instrumented the application communication module
of the video card to measure how long it took to receive and
display a frame. Since our transformation modules work in
pairs, each additional transformation module is added to both
sides.

In Figure 2 we show the average time it takes between
transfers of a frame of video in both shared memory and pipe
implementations, across varying numbers of transformation
modules. Focusing first on pipes, adding transformation
module pairs increases overhead, resulting in it taking longer
to send and display a frame, as expected. The main perfor-
mance dip is in adding the first transformation module: this
adds 8.9% of overhead to the system with no transformation
modules. Each additional transformation module adds an
average of 2.3% overhead. These incremental overheads are
small and tolerable, and in a sense are indicative of worst-
case cost since they will only become a smaller portion of
the overall time when the transformation modules actually
do useful work (and thus take up time themselves), or when
network times grow beyond that of the fast network used in
our experiments.

B. Performance of Shared Memory

To test shared memory compared to pipes, we created a
similar transformation module to that described in Section
V-A, which simply passes the data through without modify-
ing it. Using our shared memory implementation, this means
the transformation module reads the starting point and size
of the update in shared memory, and then writes it to the
next transformation module, without touching or accessing
any of the data in the shared memory. We again used the
video network device driver to send video in a variety of
frame sizes.

As shown in Figure 2, it is no surprise that the times
in the shared memory implementation are essentially unaf-
fected by adding transformation modules. Again, the biggest
performance dip is the first transformation module, which
adds 5.6% of overhead to the system. Each additional
transformation module adds an average of 0.36%.

C. Comparing Pipes and Shared Memory

Focusing on the minimal times (with no transformation
modules), for a 100 square pixel frame, it takes 2.92 msecs
using pipes and 2.58 msecs using shared memory. For a 700
square pixel frame, it takes 166 msecs using pipes and 148
msecs using shared memory.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Pixels

u
S

e
c
s
 p

e
r 

F
ra

m
e

 

 

Pipes 1 TM

Pipes 8 TMs

Shared 1 TM

Shared 8 TMs

Figure 2. Performance of pipes versus that of shared memory. For each
of the pipes and shared memory methods, measurements are shown for
two situations: a single transformation module and eight transformation
modules. Additional transformation module pairs increase the performance
difference between pipes and shared memory by approximately 2%.

From the rest of the graph in Figure 2, one can see
that additional overhead from using pipes grows with both
the number of transformation modules and the frame size,
though the slopes are not large. Without transformation
modules, the system using pipes takes 6.7% longer to
display a frame on average. Each additional transformation
module adds 2.3% of overhead when compared to the
shared memory implementation using the same number of
transformation modules. This difference in overhead is a
worst-case scenario since the transformation modules are
simply transferring data. In more realistic cases where the
modules are doing a computation, the differences in transfer
speed will be a smaller proportion of the processing time,
and slower network transfer times will also cause the intra-
machine transfer time to have less impact.

VI. CONCLUSION

In this work, we presented a new networked device
driver architecture to support remote I/O devices. To support
network transparency, we encapsulate all networking and
related processing inside the networked device driver. This
means applications do not need to be modified to work
with remote devices, making this a highly viable approach
for cloud computing. Transformation modules, that form
the key “programmable” aspect of the networked device
driver, provide support for customizability while preserving
transparency.

We evaluated two implementations of the networked
device driver architecture, one where pipes are used to
transfer data between all modules, and the other using shared
memory. We showed that the implementation using pipes

incurs an overhead that, while expectedly more overhead
than that of the shared memory implementation, is relatively
small and tolerable. The benefit of pipes, of course, is
their ease of use and the simplicity that results in the
system’s implementation. Using pipes are appropriate for
many applications, especially those that leverage their built-
in flexibility when processing variably-sized messages.

REFERENCES

[1] R. W. Scheifler and J. Gettys, “The x window system,” ACM
Transactions on Graphics, vol. 5, no. 2, pp. 79–109, 1986.

[2] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper,
“Virtual network computing,” Internet Computing, vol. 2,
no. 1, pp. 33–38, 1998.

[3] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara,
“USB/IP: A peripheral bus extension for device sharing over
IP network,” in Proceedings of the USENIX Annual Technical
Conference, 2005, p. 42.

[4] R. A. Baratto, L. Kim, and J. Nieh, “THINC: A virtual display
architecture for thin-client computing,” in Proceedings of
the 20th ACM Symposium on Operating Systems Principles
(SOSP), 2005.

[5] J. Kong, I. Ganev, K. Schwan, and P. Widener, “Cameracast:
Flexible access to remote video sensors,” in Proceedings of
the ACM Multimedia Computing and Networking Conference
(MMCN). Citeseer, 2007.

[6] D. Ritchie, “A stream input-output system,” AT&T Bell Lab-
oratories Technical Journal, vol. 63, no. 8, pp. 1897–1910,
1984.

[7] K. Mayer-Patel and L. Rowe, “Design and performance of
the berkeley continuous media toolkit,” in Proceedings of
IS&T/SPIE Symposium on Electronic Imaging: Science &
Technology (Multimedia Computing and Networking), 1997,
pp. 194–206.

[8] J. Huang, W. Feng, N. Bulusu, and W. Feng, “Cascades:
Scalable, flexible and composable middleware for multi-
modal sensor networking applications,” in Proceedings of The
ACM/SPIE Multimedia Computing and Networking, 2006.

[9] G. Reitmayr and D. Schmalstieg, “OpenTracker: A flexible
software design for three-dimensional interaction,” Virtual
Reality, vol. 9, no. 1, pp. 79–92, 2005.

[10] J. von Spiczak, E. Samset, S. DiMaio, G. Reitmayr,
D. Schmalstieg, C. Burghart, and R. Kikinis, “Multi-modal
event streams for virtual reality.,” in Proceedings of the
14th SPIE Annual Multimedia Computing and Networking
Conference (MMCN’07), San Jose, California, 2007.

[11] T. Hudson, A. Seeger, H. Weber, J. Juliano, and A. Helser,
“VRPN: A device-independent, network-transparent VR pe-
ripheral system,” in Proceedings of the ACM Symposium on
Virtual Reality Software and Technology. ACM New York,
NY, USA, 2001, pp. 55–61.

[12] C. Taylor and J. Pasquale, “A remote I/O solution for the
Cloud,” in Proceedings of the 2012 IEEE International Con-
ference on Cloud Computing (CLOUD), 2012.


