
');DROP TABLE textbooks;--
An Argument for SQL Injection Coverage in Database Textbooks

Cynthia Taylor

Oberlin College

ctaylor@oberlin.edu

Saheel Sakharkar

University of Illinois at Chicago

ssakha2@uic.edu

ABSTRACT
In this position paper, we look at the representation of SQL injec-

tion within undergraduate database textbooks, and argue that both

discussion of security issues and security of example code must be

improved. SQL injection is a common database exploit which takes

advantage of programs that incorrectly incorporate user input into

SQL statements. Teaching students how to write parameterized

SQL statements is key to preventing this wide-spread attack. We

look at the current editions of seven textbooks used at the top 50

US CS programs, and analyze their coverage of SQL injection, use

of parameterized queries, and correctness of examples. We find a

wide variety in the amount of coverage given to the topic, from

none at all to in-depth coverage of defenses. Additionally, we find

cases of SQL injectable code given as examples of how to correctly

write queries in two of seven textbooks.

KEYWORDS
SQL injection, database textbooks, database security

ACM Reference Format:
Cynthia Taylor and Saheel Sakharkar. 2019. ');DROP TABLE textbooks;-

-: An Argument for SQL Injection Coverage in Database Textbooks. In

Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287429

1 INTRODUCTION

It has frequently been argued that if we want all students to be

exposed to computer security and secure coding practices, these

topics must be integrated into many CS courses, not isolated in

computer security classes [17, 19–21, 33, 35]. However, even though

including relevant security topics in courses has been promoted

since the nineties [17, 33], many courses still do not cover them.

Education research has shown that textbooks frequently guide

the topics covered in a course [11, 14]. Because textbooks help define

what is covered, their inclusion of security topics can determine

whether or not students are exposed to security guidelines and best

practices. When assessing the current state of security coverage

in courses, textbooks can give us important information about

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00

https://doi.org/10.1145/3287324.3287429

how likely a topic is to be included in most classes. Furthermore,

adding security concepts into textbooks could be key to getting

them widely discussed.

With that in mind, we look at a single security issue that we think

all undergraduates should be exposed to, SQL injection, and analyze

how it is covered in the most recent editions of database textbooks

used in the top fifty Computer Science departments in the United

States. SQL (Structured Query Language) is a family of languages

used to run queries on databases. SQL injections take advantage of

SQL queries which do not safeguard against improperly formatted

user input, and as a result allow malevolent users to effectively

run their own SQL statements against a database, allowing them to

exfiltrate user information, log in as arbitrary users, and destroy

data. SQL injection attacks have stolen credit card data, hacked

the websites of election boards, and revealed cheating spouses [13,

32, 38]. SQL injection vulnerabilities are among the most common

database vulnerabilities and have consistently appeared at the top

of vulnerability lists [23, 39], despite the vulnerability being over

fifteen years old [7]. These attacks have become evenmore common

over time, as automated tools to detect and exploit them have

become readily available [7].

This common attack can easily be prevented with proper coding

techniques, namely using parameterized queries. The fact that vul-

nerable coding techniques are still commonly used has been blamed

by some industry managers on a lack of education about this attack,

with a recent article quoting one manager as saying “Any serious

programmer should know about SQLi [SQL injection], but there’s a

massive shortage of programmers, so companies hire anyone even

if they don’t have the right training" [7]. The same article describes

another manager who blames bad educational resources, saying

“he lamented about the large number of tutorials available to web

developers online that, instead of providing decent advice, detail

how to make systems that are vulnerable to SQLi" [7].

Given that SQL injection can be prevented with a properly ed-

ucated workforce, it is important that database textbooks demon-

strate how to correctly parameterize queries to protect against it,

and include in-depth discussion of the vulnerability and the impor-

tance of preventing it. In this work, we look at how commonly used

database textbooks address the issue. We analyzed each textbook

with regard to the following questions:

(1) Is SQL injection discussed in the textbook?

(2) Are there examples demonstrating how to incorporate user

input while protecting against SQL injection?

(3) Are there SQL examples that would be vulnerable to SQL

injection?

We find that there is a wide variety in how different texts discuss

the issue, ranging from having code examples which are vulnerable

to SQL injection, having no examples which take user input, or not

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

191

https://doi.org/10.1145/3287324.3287429
https://doi.org/10.1145/3287324.3287429

Table 1: Text name, author, publication date, and number of universities using the text. All editions are the most recent for
the text.

Text Author Pub. Date Using Text

Database Management Systems, 3rd ed. [24] Ramakrishnan 2002 16

Database System Concepts, 6th ed. [28] Silberschatz 2010 10

Database Systems: The Complete Book, 2nd ed. [12] Garcia-Molina 2008 10

Fundamentals of Database Systems, 7th ed. [9] Elmasri 2015 4

Database Systems: A Practical Approach to Design, Implementation,

and Management, 6th ed. [6]

Connolly 2014 2

Data Modeling Essentials, 3rd ed. [29] Simsion 2004 1

Learning SQL, 2nd ed. [1] Beaulieu 2009 1

discussing SQL injection at all within the text, to discussing the

issue and dangers in depth and demonstrating the correct way to

use variables within a SQL query. Across seven textbooks, we look

at 745 SQL examples, of which only 59 incorporate user input. Of

these 59, four examples include user input in ways that make them

vulnerable to SQL injection. While this is only 6.8% of examples that

include user input, any of these examples have the potential to make

student code vulnerable to attack if the techniques are followed in

deployed code. Given that SQL injection attempts against internet-

deployed programs are inevitable in modern environments, this

has the potential to cause real harm to users of these programs.

Even more troubling is that we find the majority of these text-

books (five out of seven) do not discuss SQL injection at all. This

means that even if the book itself does not contain vulnerable exam-

ples, students who later find such examples on the internet tutorials

and help sites (e.g., Stack Overflow) will be unlikely to recognize

the code as dangerous.

In this position paper, we first analyze the most recent editions

of popular database textbooks to quantify their coverage of SQL

injection and defenses against it. Following this, we make recom-

mendations for how instructors, textbooks authors, and the security

community. We end with an argument on the importance of pre-

senting secure code in textbooks.

2 SQL INJECTIONS AND HOW TO PREVENT
THEM

There are a number of variants of SQL attacks, and a vast array of

advice on how to prevent them [16, 27]. In a classic SQL injection,

a malevolent actor takes advantage of improperly sanitized data

input in order to run their own query against the database. The

key to a successful SQL injection attack is the ability to have the

database interpret user input as SQL code, rather than as data.

Consider the following dynamically constructed query, where

the variables user and pass are input by the user and concatenated
with the rest of the string to form a SQL query:

'SELECT * FROM usertable WHERE username="'

+ user + '" AND password="' + pass + '";'

A cooperative user will enter their username and password (say,

“alice” and “rabbit”), to result in the string

SELECT * FROM usertable WHERE

username="alice" AND password="rabbit";

which will return all information on the user alice with password

rabbit.

A malevolent user could enter x" OR "1"="1 as the password.
When the string is concatenated together, this will result in the

following query:

SELECT * FROM usertable WHERE

username="alice" AND password="x" OR "1"="1";

By using a quote in their input string, the user causes the database

to interpret OR as part of the SQL code rather than as part of the

password, indicating that they should select information on the user

either if the password is equal to x, or if the second part of the clause

is true. The phrase "1"="1"will always evaluate to true, allowing a
bad actor to pull details for any user. Using a similar phrase for the

username will allow them to view the entire table without having

to know specific usernames. Additionally, adding ;-- to the end of

the input will end the SQL statement and comment out everything

following on the same line. New SQL statements can be added

between ending the previous statement and commenting out the

rest of the line, allowing hackers to run arbitrary code against the

database. While the details of this attack may vary depending on

the SQL variant being used, the basic attack works across all SQL

varietals.

The most effective measure for preventing SQL injection is al-

ways using parameterized queries to incorporate user input, rather

than dynamically creating SQL statements via string concatenation.

In the example above, a parameterized version of the query would

look something like:

SELECT * FROM usertable WHERE username=@user

AND password=@pass;

At runtime, the values of @user and @pass will be programatically

set to values input by the user. Using parameters allows the rest

of the SQL statement to be compiled ahead of time, with only the

parameters changing at run time. As a result, user input will always

be treated as data and never be compiled into SQL, voiding the

ability of user input to be interpreted semantically as part of SQL

queries.

Using some sort of input filtering is additionally recommended

to prevent obvious bad input, although the impossibility of being

able to filter for every possible bad input means that input filtering

alone is not enough. Additionally, there are many tools designed to

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

192

Table 2: Analysis of database texts and their SQL examples. Inputless queries refer to SQL statements that do not contain
variables or user input. Parameter Queries refer to SQL statements that demonstrate using parameters for user input. Unsafe
Queries refer to SQL statements which are vulnerable to SQL injection. SQLi mentions refer to in text discussions of SQL
injection, and parametermentions refere to in text discussion of how andwhy to use parameterized. The last two rows indicate
whether or not the text contains content related to SQL injections, namely if it contains a chapter focusing on interfacing with
SQL via applications or the web, and whether it contains a chapter on security.

Ramakrishnan Silberschatz Garcia-Molina Elmasri Connolly Simsion Beaulieu

Inputless Queries 53 172 60 80 51 8 262

Parameter Queries 15 10 17 11 2 0 0

Unsafe Queries 0 0 2 2 0 0 0

SQLi Mentions 0 2 0 4 0 0 0

Parameter Mentions 0 1 0 4 0 0 0

Web/App Chapter Yes Yes Yes Yes Yes No No

Security Chapter Yes Yes Yes Yes Yes No No

detect or prevent SQL injection [16, 27]. We treat the coverage of

these tools as out of the scope of this project (and did not see them

mentioned in any of the textbooks we analyzed).

3 METHODOLOGY
To determine which textbooks to analyze, we began by compiling

a list of database textbooks used by the top fifty Computer Science

departments in the United States [31]. We looked at the syllabus

of the most recently taught undergraduate database courses at

each university. We used the most recent available edition of each

textbook. The textbooks are listed by popularity in Table 1.

For each text, we looked at queries regarding creating and drop-

ping tables; insert, update, and delete statements; join queries; views

and cursors; and granting and revoking privileges. We did not count

queries regarding constraints, triggers, and transactions. We only

looked at examples within chapters, i.e. we skipped SQL exam-

ples/statements that were presented in end-of-chapter exercises

and review questions.

Our categorization of the SQL examples separated them into

three categories: examples with no input, parameterized examples,

and unsafe examples. Queries with no input do not require any

user information, and thus are protected from SQL injection by

default. Parameterized queries demonstrate incorporating user in-

put in a way that protects from SQL injection. Unsafe queries are

susceptible to SQL injection and demonstrate bad practices when

incorporating user input. We did not count examples as unsafe if

they were included as part of of a discussion of SQL injection, i.e.

if they were illustrating what not to do. We followed the OWASP

guidelines [22] when deciding if an example was vulnerable to SQL

injection, namely checking if the query was formed using string

concatenation to add user inputs.

We also looked at mentions of SQL injection within the text, and

counted the number of times the issue was discussed, as well as the

number of discussions of using parametrized queries to prevent SQL

injections. These counts looked for discussionwithin the text, rather

than query examples. Lastly, we looked at whether the textbook

had chapters discussing interfacing SQL with applications or the

web or chapters discussing security as a proxy for whether SQL

injection was within the scope of topics covered by the text.

4 RESULTS
The results of our categorization of the SQL examples and discussion

in these database texts is presented in Table 2.

We found that database texts vary widely in all aspects of SQL

injection coverage, ranging from not mentioning it at all or con-

taining unsafe SQL query examples, to having explicit discussions

of SQL injection and multiple examples demonstrating the correct

way to handle user input. As shown in Table 2, most of the text-

books we looked at include examples of incorporating parameters

to generate safe, non-injectable SQL queries. However, most do not

explicitly discuss SQL injection. We also found two database texts,

Molina [12] and Elmasri [9], which include unsafe examples that

are easily SQL injectable, even though Elmasri [9] discusses param-

eterizing SQL queries to prevent SQL injection at other locations

in the text.

4.1 Discussion of SQL Injection
Five of the seven textbooks we looked at do not mention SQL

injection at all. Five of these seven textbooks had chapters on both

using other programming languages to access SQL databases, and

on database security, making SQL injection highly relevant to their

content. However, only two of these textbooks explicitly discuss it.

Silberschatz [28] mentions SQL injection where relevant, both in

the section on interfacing SQL with other programming languages

and in a section on application security. It advises students to use

parameterized statements. However, it implies that using param-

eters is equivalent to using a function to add escape characters

around user input. This is incorrect, as using parameters allows

SQL statements to be pre-compiled, and prevents any user input

from being interpreted as code, while escaping user input is not

recommended as a sole defense since imperfect escape functions

can easily be subverted.

Elmasri [9] mentions SQL injection in the text next to an example

of a properly parameterized query, and devotes a section of the

security chapter to it. The advice in their security chapter generally

follows best practices, recommending students use parameterized

statements, and recommending filtering input while also pointing

out its limitations (namely, the impossibility of filtering out all

possible dangerous characters).

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

193

Listing 1: Figure 9.31 transcribed from Molina [12]
$result = $myCon->query("INSERT INTO

Starsln VALUES($_POST['title'],

$_POST['year'], $_POST['starName'])");

Listing 2: Figure 10.13 transcribed from Elmasri [9]
0) import java.io.* ;

1) import java.sql.*

...

2) class printDepartmentEmps {

3) public static void main (String args [])

throws SQLException, IOException{

4) try { Class.forName("oracle.jbdc.driver.

OracleDriver")

5) } catch (ClassNotFoundException x){

6) System.out.println ("Driver could not

be loaded") ;

7) }

8) String dbacct, passwrd, lname ;

9) Double salary ;

10) Integer dno ;

11) dbacct = readentry("Enter database

account:");

12) passwrd = readentry("Enter password:") ;

13) Connection conn = DriverManager.

getConnection

14) ("jdbc:oracle:oci8:" + dbacct + "/"

+ passwrd) ;

15) dno = readentry("Enter a Department

Number: ");

16) String q = "select Lname, Salary from

EMPLOYEE where Dno = " + dno.tostring() ;

17) Statement s = conn.createStatement() ;

18) ResultSet r = s.executeQuery(q) ;

19) while (r.next()) {

20) lname = r.getString(1) ;

21) salary = r.getDoublde(2) ;

22) system.out.printline(lname + salary) ;

23) } }

24) }

Listing 3: Figure transcribed from Section 6.1.3 of Ramakr-
ishnan [24]
char c_sqlstring[] = {"DELETE FROM Sailors

WHERE rating>5"};

EXEC SQL PREPARE readytogo FROM :csqlstring;

EXEC SQL EXECUTE readytogo;

Listing 4: Figure 9.10 transcribed from Molina [12]. An al-
most identical example exists as Figure 10.4 in Elmasri [9].
1) void readQuery() {

2) EXEC SQL BEGIN DECLARE SECTION;

3) char *query;

4) EXEC SQL END DECLARE SECTION;

5) /*prompt user for a query, allocate

space (e.g., use malloc) and make

shared variable :query point

to the first character of the query */

6) EXEC SQL PREPARE SQLquery from :query;

7) EXEC SQL EXECUTE SQLquery;

}

Listing 5: Figure 11.6 transcribed from Elmasri [9]
0) require 'DB.php';

1) $d = DB::connect('oci8://act:pass12@

www.host.com/db1');

2) if (DB::isError($d))

{ die("cannot connect - " .

$d->getMessage()); }

...

3) $q = $d->query("CREATE TABLE EMPLOYEE

4) (Emp_id INT,

5) Name VARCHAR(15),

6) Job VARCHAR(10),

7) Dno INT);");

8) if (DB::isError($q))

{ die("table creation not successful

- " . $q->getMessage()); }

...

9) $d->setErrorHandling(PEAR_ERROR_DIE);

...

10) $eid = $d->nextID('EMPLOYEE');

11) $q = $d->query("INSERT INTO EMPLOYEE

VALUES

12) ($eid,

$_POST['emp_name'],

$_POST['emp_job'],

$_POST['emp_dno'])");

...

13) $eid = $d->nextID('EMPLOYEE');

14) $q = $d->query('INSERT INTO EMPLOYEE

VALUES (?, ?, ?, ?)',

15) array($eid,

$_POST['emp_name'],

$_POST['emp_job'],

$_POST['emp_dno']));

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

194

How SQL injectable examples are framed and described is im-

portant. Listing 5 from Elmasri [9] demonstrates both the correct

(lines 14-15) and incorrect (lines 11-12) way to incorporate form

data into a SQL query using PHP. However, the fact that the first

example should not be used is not discussed until two pages after

the example in the text, and is not mentioned at all in the caption or

on the page where the figure appears. This means a student who is

skimming the text looking for an example to modify for their own

code could simply copy the code that first appears in the example,

without being aware that this is in fact an example of what they

shouldn’t do.

4.2 Demonstration of Parameterized Queries
Textbooks didmuch better with demonstrating parameterized queries,

with five of the seven textbooks we looked at including examples

of parameterized queries. This included every text that discussed

interfacing with SQL from another programming language. This

is very promising, as it shows that students are being shown the

correct way to write queries.

The texts that did not cover them may consider parameterized

queries to be out of the scope of what is covered in the text. For ex-

ample, Simsion [29] focused on data modeling and only contained

8 SQL queries in total. Likewise, Beaulieu [1], while covering SQL

queries in great detail with 262 query examples, did not discuss

any techniques for using user input in queries, or writing queries

to interface with the web or other programming languages. How-

ever, both these texts were being used in a database course at the

same institution, where they were the only required textbooks,

which means that students in that course had no text reference for

parameterized queries.

4.3 SQL injectable examples
We found SQL injectable examples in two of the textbooks we

looked at, as well as examples which introduced SQL injectable

coding techniques while not being exploitable themselves.

The example shown in Listing 1 uses the PHP $_POST variable,

which obtains user input from form elements. This means that any

user input will be directly concatenated with the SQL statement,

with no alteration. This example is clearly vulnerable to SQL injec-

tion, yet is presented in the text as the correct way to incorporate

user input into SQL queries within a website. Students who fol-

low this example in their code will be creating websites which are

trivially hackable, and actively dangerous to their users.

Some of the examples, such as Listing 2, were not strictly SQL

injectable but demonstrated a coding style that was. Listing 2 is

not itself SQL injectable because dno, the value it reads in line 15

and concatenates into a SQL query in line 16, is read as a integer.

However, this example introduces the student to the idea of creating

SQL statements via string concatenation, and includes concatenat-

ing strings taken directly from the user in line 14. The idea that

this might be dangerous is not mentioned anywhere in the text

surrounding the example, although SQL injection is mentioned else-

where in the text. Ramakrishnan [24] also discusses constructing

dynamic SQL statements and while the example it gives, shown

in Listing 3, is not SQL injectable (in fact, it does not involve any

variables), it demonstrates a technique which enables SQL injection

without any caution to the student about why one might want to

be careful when using it.

Listing 4 is an example which appears inMolina [12], although an

almost identical example appears within Elmasri [9]. This example

is trivially SQL injectable, but at least makes clear to the student

that the user will be able to run arbitrary code against the database

(although the surrounding text does not explain why this might be

a bad idea).

5 DISCUSSION
In this section, we discuss the ramifications of this work and offer

recommendations for both instructors, textbook authors, and the

security community.

5.1 Recommendations for Instructors
As SQL injection is one of the most exploited and most common

software vulnerabilities, we urge instructors make it a priority in

textbook selection, and to select textbooks carefully. Textbooks

should always show parameterized statements in examples incor-

porating user input, and should explicitly discuss the danger and

popularity of SQL injection attacks.

Our finding vulnerable code examples in multiple textbooks

means that instructors must use caution when selecting a databases

textbook. Choosing a textbook with these examples may do real

harm in leading students to write vulnerable code. While instruc-

tors can cover the correct way to do this in class, separate from the

textbook, students may continue to use the text as a reference after

the course is over (and after their recollection of covered topics

has faded). In this case, a textbook which demonstrates vulnera-

ble SQL queries may actually be dangerous, as students copying

such examples can introduce vulnerabilities in their own code. If an

instructor must use one of these texts for some reason, we recom-

mend they specifically point out the unsafe examples to students,

and encourage the students to correct or cross them out within the

text.

While this work considers currently popular database texts, new

books and new editions will be released. When selecting a textbook,

we recommend instructors carefully read chapters that cover inter-

facing with SQL through other languages or via the web, as this

was where we found vulnerable examples, and where SQL injection

should be mentioned. We also caution instructors against assuming

that this problem will be solved in new textbook editions, as the

most recent textbook we looked at ([9]) contained multiple SQL

injectible code examples.

Lastly, regardless of the text used, we urge instructors to spend

significant class time educating students on the very real danger of

SQL injection attacks, and how they can defend their code against

it.

5.2 Recommendations for Authors
Although we looked only at database texts, and only at one specific

vulnerability, we suspect that textbooks in other subjects demon-

strate insecure examples as well. (For example, a colleague recently

shared an example from an introductory C text which was vulnera-

ble to buffer overflows.) While in most cases making a mistake or

not including information in a textbook may be merely regrettable,

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

195

in the case of security this can be actively dangerous. For many

security vulnerabilities, the best defense we have is educating pro-

grammers. The ramifications of not educating them in these cases

is real harm to the users of their applications, in the form of stolen

credit cards and identifiers, personal information being revealed,

and more.

In the case where textbook authors are not security experts,

collaboration with security researchers when writing textbooks

could be beneficial. A “security editor” could check code examples,

and recommend key security concerns to cover in the text, and

where they should be covered.

In order to design secure applications, we must incorporate the

idea of security from the very beginning of the design process,

rather than attempting to add it on at the end. Likewise, if we want

students to go on to write secure code, we must center the idea of

security within their education, rather than isolating it to a separate

chapter at the end of a textbook, or expecting it to be covered in

a separate security course. It is unfortunate that we must expect

that any application that is made public will be attacked. However,

if we want users to be safe, we must emphasize that expectation

within our topic coverage.

5.3 Implications for the Security Community
Since textbooks shape what is covered in class [11, 14], getting

security topics into textbooks could have a dramatic impact on get-

ting security integrated into courses. Our survey showed that three

textbooks were used in 81% of the courses we looked at. Getting

more security coverage in these textbooks would positively impact

a huge number of students. Security educators should consider

collaborating with textbook authors to ensure both secure code

examples and integrated coverage of security topics. SQL injection

is just one of many attacks where the solution is programmer edu-

cation, and all signs indicate that we have a great deal of work to

do within education before these problems are actually solved.

6 RELATEDWORK
Prior work has looked at analyzing examples presented in com-

puter science textbooks; our approach followed a model similar

to Börstler et al. [2], where examples from commonly used intro-

ductory programming textbooks were reviewed for their quality.

Within the context of databases, both Said et al. [25] and Conklin

and Heinrich [5] compare the topics covered in various database

textbooks, Said [25] being more focused on database security topics

whereas Conklin [5] is more focused on database topics in general.

However, neither focused specifically on SQL injection, as we do in

this work.

Previous work has looked at how to incorporate security into

database courses, frequently citing a current lack of coverage on the

subject. Yang [34], Li et al. [18], Guimaraes et al. [15], and Stalvey

et al. [30] all offer guidelines, coursework and labs on database

security, which include SQL injection among other topics. A great

deal of work has been done creating hands-on labs which teach SQL

injection, to be used either in database or security courses. Yuan

et al. [37] evaluates several different lab frameworks for teaching

students about SQL injection, including [3, 4, 8, 36]. Other lab

frameworks which include SQL injection are presented in [10, 18,

26]. Given the wide variety of lab work covering this topic, SQL

injection is clearly considered an important topic by the security

community.

7 CONCLUSION
The majority of textbooks we looked at did not discuss one of the

most widespread and dangerous security problems today, SQL injec-

tion, an attack for which the most effective defense is programmer

education. Additionally, multiple textbooks included code examples

that would make programs vulnerable to this attack. Given the

pervasiveness of SQL injection on the modern web, not educating

students about it is irresponsible and dangerous, and supplying

vulnerable code is actively harmful.

To stop SQL injection vulnerabilities in the wild, we need to

educate students on how to defend against them. We need database

textbooks not only to demonstrate parameterized queries, but to

explain to students why it is important to use them. If we wish to

secure the web in the future, both instructors and textbook authors

need to emphasize the importance of protecting against this attack.

Given how easy and widely known the SQL injection attack is,

it is at this point a fact of life that any code put on the internet will

have SQL injection attempts against it. Students need to know that

this is not an academic or abstract possibility, but something that

will happen to their code. Most of the texts we looked at showed

secure examples, but did not mention SQL injection or explain why

using parameters was important. Without this knowledge, students

who later see vulnerable code examples will not know that they

show a coding style that will introduce dangerous vulnerabilities

into their code.

It may be very tempting to view things like web programming

or SQL injection as tangential to the core concepts of databases,

and perhaps out of scope for textbooks. However, is very likely

that in any databases course, some students will go on to write

internet-facing code. Given the lack of dedicated web programming

courses, this may be the only place students are exposed to creating

SQL queries before they write applications that are widely used

and publicly available via the web. Students who are not taught

how to protect their queries from SQL injection in their databases

course may end up learning about it only after their applications

are hacked.

In our investigation, we saw that the same two textbooks are

used by over half of the top fifty computer science programs in the

US. A single textbook may be read by tens of thousands of students

who eventually work in the tech industry. How that textbook deals

with security issues may have a profound effect on the future of

application security.

8 ACKNOWLEDGEMENTS
Thanks to Stephen Checkoway for many useful conversations, and

to the anonymous reviewers for their helpful comments.

REFERENCES
[1] Beaulieu, A. Learning SQL: Master SQL Fundamentals, 2nd Edition. O’Reilly

Media, 2009.

[2] Börstler, J., Nordström, M., and Paterson, J. H. On the quality of examples in

introductory Java textbooks. ACM Transactions on Computing Education (TOCE)
11, 1 (2011), 3.

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

196

[3] Chen, L., Tao, L., Li, X., and Lin, C. A tool for teaching web application security.

In Proceedings of the 14th Colloquium for Information Systems Security Education
(2010), pp. 17–24.

[4] Chu, B., Stranathan, W., Cody, J., Peterson, J., Wenner, A., and Yu, H. Teach-

ing secure software development with vulnerability assessment. In Proceedings of
the 13 Colloquium for Information Systems Security Education (CISSE 2009). Seattle,
Washington (2009).

[5] Conklin, M., and Heinrichs, L. In search of the right database text. Journal of
Computing Sciences in Colleges 21, 2 (2005), 305–312.

[6] Connolly, T., and Begg, C. Database Systems: A Practical Approach to Design,
Implementation, and Management, 6th Edition. Pearson, 2014.

[7] Cox, J. The History of SQL Injection, the Hack That Will Never Go Away,
2015. https://motherboard.vice.com/en_us/article/aekzez/the-history-of-sql-

injection-the-hack-that-will-never-go-away, Accessed on 07/14/2017.

[8] Du, W., and Wang, R. Seed: A suite of instructional laboratories for computer

security education. Journal on Educational Resources in Computing (JERIC) 8, 1
(2008), 3.

[9] Elmasri, R., and Navathe, S. B. Fundamentals of Database Systems, 7th Edition.
Pearson, 2015.

[10] Ernits, M., Tammekänd, J., and Maennel, O. i-tee: A fully automated cyber

defense competition for students. In ACM SIGCOMM Computer Communication
Review (2015), vol. 45, ACM, pp. 113–114.

[11] Freeman, D. J., and Porter, A. C. Do textbooks dictate the content of mathe-

matics instruction in elementary schools? American educational research journal
26, 3 (1989), 403–421.

[12] Garcia-Molina, H., Ullman, J. D., and Widom, J. Database Systems: The Com-
plete Book, 2nd Edition. Pearson, 2008.

[13] Greenberg, A. Hack Brief: As FBI Warns Election Sites Got Hacked, All Eyes Are
on Russia, 2016. https://www.wired.com/2016/08/hack-brief-fbi-warns-election-

sites-got-hacked-eyes-russia//, Accessed on 08/10/2017.

[14] Grossman, P., and Thompson, C. Learning from curriculum materials: Scaffolds

for new teachers? Teaching and teacher education 24, 8 (2008), 2014–2026.
[15] Guimaraes, M., Murray, M., and Austin, R. Incorporating database security

courseware into a database security class. In Proceedings of the 4th annual
conference on Information security curriculum development (2007), ACM, p. 5.

[16] Halfond, W. G., Viegas, J., and Orso, A. A classification of SQL-injection

attacks and countermeasures. In Proceedings of the IEEE International Symposium
on Secure Software Engineering (2006), vol. 1, IEEE, pp. 13–15.

[17] Irvine, C. E., Chin, S.-K., and Frincke, D. Integrating security into the cur-

riculum. IEEE Computer 31, 12 (Dec. 1998), 25–30. Online at http://cisr.nps.edu/
downloads/papers/98paper_integrate.pdf.

[18] Li, L., Qian, K., Chen, Q., Hasan, R., and Shao, G. Developing hands-on labware

for emerging database security. In Proceedings of the 17th Annual Conference on
Information Technology Education (2016), ACM, pp. 60–64.

[19] Meghanathan, N., Kim, H., and Moore, L. A. Incorporation of aspects of

systems security and software security in senior capstone projects. In Proceedings
of ITNG 2012 (Apr. 2012), S. Latifi, Ed., IEEE Computer Society, pp. 319–324. Online

at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6209193.

[20] Mullins, P., Wolfe, J., Fry, M., Wynters, E., Calhoun, W., Montante, R.,

and Oblitey, W. Panel on integrating security concepts into existing computer

courses. In Proceedings of SIGCSE 2002 (Feb. 2002), S. Grissom and D. Knox, Eds.,

ACM Press, pp. 365–66. Online at http://dl.acm.org/citation.cfm?id=563480.

[21] Null, L. Integrating security across the computer science curriculum. Journal
of Computing Sciences in Colleges 19, 5 (May 2004), 170–178. Online at http:

//dl.acm.org/citation.cfm?id=1060104.

[22] OWASP. Reviewing Code for SQL Injection, 2010. https://www.owasp.org/index.

php/Reviewing_Code_for_SQL_Injection, Accessed on 11/17/2016.

[23] OWASP. OWASP Top Ten Project, 2017. https://www.owasp.org/index.php/

Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017_Release_

Candidate, Accessed on 7/14/2017.

[24] Ramakrishnan, R., and Gehrke, J. Database Management Systems, 3rd Edition.
McGraw-Hill, 2002.

[25] Said, H. E., Guimaraes, M. A., Maamar, Z., and Jololian, L. Database and

database application security. In ACM SIGCSE Bulletin (2009), vol. 41, ACM,

pp. 90–93.

[26] Schweitzer, D., and Boleng, J. Designing web labs for teaching security

concepts. Journal of Computing Sciences in Colleges 25, 2 (2009), 39–45.
[27] Shegokar, A. M., and Manjaramkar, A. K. A survey on SQL injection attack,

detection and prevention techniques. Int. J. Comput. Sci. Inf. Technol 5, 2 (2014),
2553–2555.

[28] Silberschatz, A., Korth, H., and Sudarshan, S. Database System Concepts, 6th
Edition. McGraw-Hill, 2010.

[29] Simsion, G., and Witt, G. Data Modeling Essentials, 3rd Edition. Morgan

Kaufmann, 2004.

[30] Stalvey, R. H., Farkas, C., and Eastman, C. First use: introducing information

security in high school oracle academy courses. In Information Reuse and Inte-
gration (IRI), 2012 IEEE 13th International Conference on (2012), IEEE, pp. 653–658.

[31] Stanger, M., and Martin, E. The 50 Best Computer-Science and Engineer-
ing Schools in America, 2015. http://www.businessinsider.com/best-computer-

science-engineering-schools-in-america-2015-7, Accessed on 10/05/2016.

[32] Trainer, K. Between 35,000 and 40,000 credit cards exposed to hackers after coding
errors led to SQL Injection, 2016. https://www.foregenix.com/blog/credit-cards-

exposed-to-hackers-poor-coding-sql-injection.

[33] White, G., and Nordstrom, G. Security across the curriculum: Using computer

security to teach computer science principles. In Proceeding of NISSC 1996 (Oct.
1996), pp. 483–88. Online at http://csrc.nist.gov/nissc/1996/papers/NISSC96/

paper003/sec_cur.pdf.

[34] Yang, L. Teaching database security and auditing. In ACM SIGCSE Bulletin (2009),
vol. 41, ACM, pp. 241–245.

[35] Yang, T. A. Computer security and impact on computer science education.

Journal of Computing Sciences in Colleges 16, 4 (2001), 233–246. Online at http:
//dl.acm.org/citation.cfm?id=378722.

[36] Yuan, X., Hernandez, J., Waddell, I., Chu, B., and Yu, H. Hands-on laboratory

exercises for teaching software security. In Proceedings of the 16th Colloquium
for Information Systems Security Education (2012).

[37] Yuan, X., Williams, I., Kim, T. H., Xu, J., Yu, H., and Kim, J. H. Evaluating hands-

on labs for teaching sql injection: a comparative study. Journal of Computing
Sciences in Colleges 32, 4 (2017), 33–39.

[38] Zetter, K. Answers to Your Burning Questions on the Ashley Madison Hack,
2015. https://www.wired.com/2015/08/ashley-madison-hack-everything-you-

need-to-know-your-questions-explained/, Accessed on 08/10/2017.

[39] Zetter, K. Hacker Lexicon: SQL Injections, an Everyday Hacker’s Favorite Attack,
2016. https://www.wired.com/2016/05/hacker-lexicon-sql-injections-everyday-

hackers-favorite-attack/, Accessed on 01/17/2017.

Paper Session: Databases SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

197

https://motherboard.vice.com/en_us/article/aekzez/the-history-of-sql-injection-the-hack-that-will- never-go-away
https://motherboard.vice.com/en_us/article/aekzez/the-history-of-sql-injection-the-hack-that-will- never-go-away
https://www.wired.com/2016/08/hack-brief-fbi-warns-election-sites-got-hacked-eyes-russia//
https://www.wired.com/2016/08/hack-brief-fbi-warns-election-sites-got-hacked-eyes-russia//
http://cisr.nps.edu/downloads/papers/98paper_integrate.pdf
http://cisr.nps.edu/downloads/papers/98paper_integrate.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6209193
http://dl.acm.org/citation.cfm?id=563480
http://dl.acm.org/citation.cfm?id=1060104
http://dl.acm.org/citation.cfm?id=1060104
https://www.owasp.org/index.php/ Reviewing_Code_for_SQL_Injection
https://www.owasp.org/index.php/ Reviewing_Code_for_SQL_Injection
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017_Release_Candidate
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017_Release_Candidate
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017_Release_Candidate
http://www.businessinsider.com/best-computer-science-engineering-schools-in-america-2015-7
http://www.businessinsider.com/best-computer-science-engineering-schools-in-america-2015-7
https://www.foregenix.com/blog/credit-cards-exposed-to-hackers-poor-coding-sql-injection
https://www.foregenix.com/blog/credit-cards-exposed-to-hackers-poor-coding-sql-injection
http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper003/sec_cur.pdf
http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper003/sec_cur.pdf
http://dl.acm.org/citation.cfm?id=378722
http://dl.acm.org/citation.cfm?id=378722
https://www.wired.com/2015/08/ashley-madison-hack-everything-you-need-to-know-your-questions-explained/
https://www.wired.com/2015/08/ashley-madison-hack-everything-you-need-to-know-your-questions-explained/
https://www.wired.com/2016/05/hacker-lexicon-sql-injections-everyday-hackers-favorite-attack/
https://www.wired.com/2016/05/hacker-lexicon-sql-injections-everyday-hackers-favorite-attack/

	Abstract
	1 Introduction
	2 SQL Injections and How To Prevent Them
	3 Methodology
	4 Results
	4.1 Discussion of SQL Injection
	4.2 Demonstration of Parameterized Queries
	4.3 SQL injectable examples

	5 Discussion
	5.1 Recommendations for Instructors
	5.2 Recommendations for Authors
	5.3 Implications for the Security Community

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

