
Unakite: Scaffolding Developers’ Decision-Making Using
the Web

Michael Xieyang Liu1, Jane Hsieh2, Nathan Hahn1, Angelina Zhou1, Emily Deng1, Shaun Burley1,
Cynthia Taylor2, Aniket Kittur1, Brad A. Myers1

1Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA
2Department of Computer Science, Oberlin College, Oberlin, Ohio

{xieyangl, nhahn, nkittur, bam}@cs.cmu.edu, {ajzhou, edeng}@andrew.cmu.edu,
{jhsieh, ctaylor}@oberlin.edu, me@shaunburley.com

ABSTRACT
Developers spend a significant portion of their time searching
for solutions and methods online. While numerous tools have
been developed to support this exploratory process, in many
cases the answers to developers’ questions involve trade-offs
among multiple valid options and not just a single solution.
Through interviews, we discovered that developers express
a desire for help with decision-making and understanding
trade-offs. Through an analysis of Stack Overflow posts, we
observed that many answers describe such trade-offs. These
findings suggest that tools designed to help a developer capture
information and make decisions about trade-offs can provide
crucial benefits for both the developers and others who want
to understand their design rationale. In this work, we probe
this hypothesis with a prototype system named Unakite that
collects, organizes, and keeps track of information about trade-
offs and builds a comparison table, which can be saved as
a design rationale for later use. Our evaluation results show
that Unakite reduces the cost of capturing tradeoff-related
information by 45%, and that the resulting comparison table
speeds up a subsequent developer’s ability to understand the
trade-offs by about a factor of three.

Author Keywords
Programming Support Tools; Trade-offs; Decision making

CCS Concepts
•Information systems → Decision support systems;
•Software and its engineering → Software design trade-
offs;

INTRODUCTION
Developers spend a significant portion of their time searching
the web for answers [16, 60]. Past HCI and software engineer-
ing research supporting developers’ foraging has focused on
helping developers find a specific solution such as example

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’19, October 20-23, 2019, New Orleans, LA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.
http://dx.doi.org/10.1145/3332165.3347908

code [56, 15, 55] and API documentation [64, 60], integrating
it into one’s own code [50, 70], and linking it back to the
source [15, 50]. However, for many programming problems,
there is no single correct solution – instead, there are many
valid possible options (each with different trade-offs), and the
decision comes down to how well each option matches the
developer’s goals [52, 28, 57, 54, 42, 59, 43]. For decision
problems such as picking a JavaScript library to build websites,
choosing an encryption algorithm to hash users’ passwords,
or seemingly straightforward ones like how to draw a blue
circle on a web page, there is more than one good answer and
trade-offs exist among all of the valid alternatives. For exam-
ple, when picking a deep learning framework, Tensorflow [11]
(with its top-notch performance and scalability) may be more
suitable for building large commercial AI systems, while a
more approachable framework like PyTorch [10] may be a
better choice for small academic projects and experiments.

As the number of frameworks, libraries, languages, and pat-
terns increases [7, 8, 9], evidence about the trade-offs often
needs to be collected across many competing information
sources (e.g., documentation sites, blog posts, and discussion
threads), and synthesized so that the developer can make an in-
formed decision. Currently, this is a challenging process since
there are high costs involved in capturing content, maintaining
its provenance (its source), and synthesizing it with other con-
tent (that may very well be in different formats and structures)
in a way that helps the developer to make a decision. For ex-
ample, one developer in our formative study reported exactly
these problems when copy-and-pasting relevant information
into a Google Doc while deciding between using React [24]
or Angular [30] to build her personal website.

This issue is compounded when later developers try to use the
initial developers’ code and discover that they need to under-
stand why and how the original decision was made. Without
proper documentation, it is hard for subsequent readers to
figure out the context of the decision space: what options were
considered, what criteria or constraints should be met, what
the resulting trade-offs are, and what was deemed to be the
most important and why. Indeed, understanding such design
rationale is cited as one of the hardest questions for developers
to answer about unfamiliar code [40, 63, 41].

http://dx.doi.org/10.1145/3332165.3347908
mailto:permissions@acm.org
mailto:me@shaunburley.com
mailto:ctaylor}@oberlin.edu
mailto:edeng}@andrew.cmu.edu
mailto:bam}@cs.cmu.edu

d2. Source URL d3.
Time of collection

Unakite sidebarWeb page

d1.Snippet title

Collect a snippet by
selecting the desired
content

a1

Collect a snippet by drawing a
bounding box around the
desired content (while holding
the Option / Alt key).

a2

Snippet cards

Snippet repositoryc

d

e

Drop the snippet as a
piece of positive
evidence

f1

Drop the snippet as a
piece of negative
evidence

f2

Drop the snippet as a
piece of informational
evidence

f3

d4. Comments

b1. Choose this
option button

c1.

Comparison tableb

Figure 1: Unakite’s user interfaces. With Unakite, a developer collects a snippet by selecting the desired content (a1) or by drawing a bounding box
around the desired content (while holding the Option / Alt key) (a2) and clicking the “Save to U” button. The collected snippet immediately shows up
under the “Uncategorized” tab in the snippet repository (c) as a snippet card (d) inside the Unakite sidebar (e), which shows the current task at the top
(“how to represent matrices in numpy”) along with the drop-down menu to pick other tasks and various tools for the task. The developer can quickly
drag the snippet and drop it in one of the cells in the comparison table near the top (b). (f1-f3) show the details of the three parts of each cell in the table
where the snippet can be dropped.

In needs-finding interviews with 15 developers, we found that
they expressed a desire for help with decision making and
understanding others’ design rationale when presented with
decision problems involving multiple trade-offs. Next, we
analyzed Stack Overflow (SO) questions, which revealed that
many answers on SO contain information describing such
trade-offs. These findings indicate that there are potential ben-
efits to tools that help developers capture information, make
decisions, and save the context for future reference.

To investigate the validity of this hypothesis, we built a pro-
totype system called Unakite1 as a plugin for the Chrome
browser. Unakite reduces the costs of capturing and organiz-
ing information about trade-offs, and persists this information
so that it can serve as the design rationale. To reduce the bur-
den on developers, Unakite provides these capabilities while
the user is searching and browsing. Unakite is named after
a pink and green semi-precious stone, and stands for “Users
Need Accelerators for Knowledge for Implementations in
Technology Environments”. It enables developers to easily
collect content from any web page into an information reposi-
tory. The amassed information is organized in a tabular format
(which we selected based on evidence from our formative stud-
ies) that crystallizes the trade-offs among various solutions

1Unakite is available at https://unakite.info

in situ. The resulting organizational structures are automat-
ically preserved and can be shared to support collaboration,
documentation, and integration with code through comments.

We evaluated how well Unakite can support participants in
collecting and organizing information about trade-offs as well
as in understanding such gathered content. Compared to using
Google Docs to build and maintain a comparison table, Un-
akite reduces the overhead cost of capturing tradeoff-related
information by 45%. Compared to just going through un-
structured information on a set of web pages, participants
using Unakite were able to understand trade-offs involved in
previously-made decisions about three times faster.

The primary contributions described in this paper include:

• formative studies showing developers’ needs for support
with decision-making,
• Unakite, a novel system that reduces the costs of captur-

ing and organizing online information and preserves the
knowledge as design rationale, and
• an evaluation of Unakite through two controlled studies that

offer insights into its usability, usefulness, and effectiveness.

RELATED WORK
Programming Support Tools for Finding Information
Many previous systems attempt to help developers find a spe-
cific piece of information. For example, tools like Mica [64],

https://unakite.info

Assieme [33], and Libra [56] improve existing general-purpose
search engines by concentrating programming-specific in-
formation to help developers locate the most relevant API
choices or other resources; BluePrint [15] and Seahawk [55]
mined software repositories and online Q&A forums to form
example-centric code searches; and CodeOn [19, 20] explores
the possibility of offloading the search and problem-solving
job to remote helpers. Other systems keep track of the sources
that developers use to support going back to them [64, 15].
However, theories and empirical work have long pointed out
that finding relevant information is just the first step [58, 69]
in such complex sensemaking tasks. Unlike previously men-
tioned systems, Unakite focuses on helping developers collect
and synthesize relevant information into structured knowledge,
which is arguably the next important step towards an actual
understanding of the decision space [31].

Design Rationale In Software Engineering
Prior research has identified that understanding the intent and
rationale for why code was done in a particular way is one
of the hard-to-answer questions for developers [40, 63, 41].
LaToza et al. [39] suggested that developers often try to under-
stand the reasons behind surprising decisions by deducing the
possible motivating requirements and criteria. Ko et al. [38]
reported that developers frequently speculate about the correct-
ness and legitimacy of a decision, and that they often wish to
see the alternatives and their trade-offs that were considered.

Despite the prevalence of the problem, effective support for
understanding decisions in programming is still considered an
open question. LaToza et al. [40] suggested that while some
of the questions could be tackled by changing and testing
the code itself, the majority of design decision questions are
difficult to answer in this fashion due to their non-functional
nature. Asking colleagues and teammates might help ease the
underlying concern about design decisions, alternatives, and
criteria that are nearly impossible to test [41], but often the
original designers are not available. Unakite addresses this
problem by keeping track of the initial developers’ decision
making trails in a structured way so that it provides a spring-
board and a consistent narrative for later code readers to easily
resurrect and assimilate the author’s original design rationale.

Code Comments & Documentation
Comments serve to improve source code readability, and are
considered valuable for code understanding and maintenance
[25, 65], which suggests that they are good locations for docu-
menting the rationale behind code decisions [40]. However, it
is well-known that developers do not like to write comments
(even if they are simple) [66, 51], and do not trust comments to
be up-to-date [26]. Another recent idea is to permit developers
to annotate software projects with rich media like pictures and
audio [45] as the design rationale, which may reduce the cost
of authoring them and increase their usefulness.

However, the fundamental challenge remains – it is both time
and effort intensive for a developer to document their deci-
sions with little immediate payoff. Not only is the payoff in
the future (which discounts its value [27]), it is also largely
for the benefit of others, with uncertainty about whether it
will be valuable, relevant, or even comprehensible. Unakite

addresses this challenge for at least a certain class of decisions
by leveraging the initial developers’ decision making process:
as developers use the web to search for information, they are
incentivized to use a tool that helps them easily keep track of
the trade-offs between various options, thereby externalizing
their thought processes [22] into a structured form that is use-
ful for decision-making and serves as documentation for later
use. Unakite does not currently address the issue of comments
going stale, but even if they do, we feel it may be useful for
developers to at least know the original design rationale.

There is a recent trend in the research community of trying to
automate the generation of various kinds of documentation,
such as rationales, commit messages, and release notes [44, 21,
48]. Alkadhi et al. proposed to automatically extract rationale
elements by analyzing IRC messages of development teams
[13]. However, these approaches rely heavily on the analysis
of existing example documentation and often suffer in accu-
racy and quality. In contrast, Unakite encourages developers
to voluntarily keep track of their decision-making processes,
which provides more accurate and organized documentation.

Making Sense of Online Information
To help people better make sense of online information, sys-
tems like Hunter Gather [61], Dontcheva et al.’s web sum-
marization tool [23], Google Notebook [3], and CheatSheet
[67, 68] enable users to collect snippets of content from web
pages and later combine them into a single document for easy
access and sharing (in [23]’s case, the snippets are algorith-
mically summarized by combining user labeling and layout
presets). Unakite draws from and builds upon this prior work
while taking a different approach in terms of organizing by:
1) giving users the complete control of what and how evi-
dence is collected, organized, and presented; and 2) enabling
and encouraging users to quickly structure information about
trade-offs as they are searching and browsing.

Kittur et al.’s characterization of the costs and benefits of
structuring information during sensemaking processes [36,
37], Chang et al.’s system on highlighting content with force
touch on mobile phones [17] and other prior work [32, 46]
suggest that interactions for collecting and structuring informa-
tion while browsing need to be quick, intuitive, and low-cost
without taxing users with too much cognitive workload. This
insight, in particular, guided the design of Unakite, where we
iterated to identify the most natural and lightweight interac-
tions for capturing and structuring snippets, such as selecting
text, drawing bounding boxes, and dragging-and-dropping.

FORMATIVE INVESTIGATIONS
To gain deeper insights into the barriers developers are facing
about trade-offs, we performed two formative studies.

Interview Study
First, we conducted a series of needs-finding interviews with
developers to understand how they currently collect and man-
age information about trade-offs in programming.

Methodology
Participants were a convenience sample of 15 developers (11
male, 4 female) recruited through social media listings and

mailing lists. To capture a variety of processes, we chose
5 professional software developers, 2 doctoral students, and
8 master students. While we do not claim that this sample
is representative of all developers, the interviews were very
informative and helped motivate the design of Unakite.

We began by asking how frequently participants made deci-
sions about trade-offs when programming. We then explored
how they manage these situations. We asked the participants to
provide context by reviewing their browser histories and code
bases to cue their recollections while retrospectively describ-
ing recent projects or problems. We solicited their workflows,
strategies, mental models, frustrations, and needs. Finally, we
wrapped up with questions probing their experience with un-
derstanding programming decisions made by other developers.

The interviews were conducted either in our research lab or
remotely by three of the authors and lasted around 30 minutes
each. They were recorded and then transcribed. The first
author went through the transcripts and coded them using an
open coding approach [18], which include discussions with
the research team. Our key findings are presented below.

Results
Making decisions about trade-offs is frequent in program-
ming. Almost all programming tasks described by participants
involved some level of decision-making that required them to
choose among options. In fact, 13 out of 15 said that they were
frequently swamped with exploring multiple possible options
while trying to compare them based on various criteria, such
as the trade-offs among optimization methods when training
neural nets (e.g., “stochastic gradient descent”, “augmented
Lagrangian”, etc.) (P9) and the balance between cost and per-
formance when picking cryptographic algorithms to protect
users’ sensitive information (P13).

Participants’ browsing patterns and mental models for
capturing trade-offs evolve as they dig deeper into the de-
cision space, with a common representation being a com-
parison table. When approaching decision-making problems
like picking a JavaScript framework to build a web application
(P10), developers generally expected to find a quick-fix style
solution at the beginning of their searching process. At this
stage, they tended to only curate a short list of solutions that
fitted their initial constraints as they queued each in a different
browser tab for later reference, without pondering much about
the advantages and disadvantages of each. As they dug deeper
into the decision space (sometimes voluntarily doing due dili-
gence to investigate multiple options before committing to
something permanent (P4, P7), and other times because the
previous solution they tried failed), they started to discover
new options, criteria, and trade-offs that they were unaware
of before. This naturally prompted them to go back to their
earlier findings and make comparisons. As reported, their
mental models at this stage quickly evolved into a comparison
table, with its entries being filled according to information
about whether an option satisfied a particular criterion. These
findings prompted us to further analyze the applicability of
tabular formats in synthesizing the trade-offs in programming
problems, which we discuss in the next section.

No matter how organized their tabular mental models might
become in the end, most participants reported that their ex-
ploration was inherently non-linear and tangled – there was
no set pattern that was followed to acquire all the relevant
information they needed. For example, as they went through
web pages, they discovered new evidence, which in turn drove
them to search for or go back to a previous page to read in
detail about another option or criterion that they previously
missed. This back-and-forth sensemaking process becomes
particularly challenging, as evidence is often spread across dif-
ferent web pages on different browser tabs, each with different
formats and structures. Additionally, participants often do not
realize that there are various trade-offs between options until
they dig deeper into the decision space, at which point they
are already overloaded with information and lost in browser
tabs, and it is hard for them to recall, search for, or go back to
previously missed content to fill in the blanks in their mental
table. These findings prompted us to offer various features
in Unakite to help developers go back to previously visited
content such as automatically keeping track of the source URL
and the scroll position when collecting information.

Both making decisions and understanding them later are
difficult and cognitively demanding, and developers ex-
pressed a strong desire for tool support. 8 out of 15 said
they used general-purpose tools and methods like taking notes
in Google Docs or using a web clipper (such as that provided
by Evernote) and reported problems such as: a high cost as-
sociated with collecting content (P7: “...copy-pasting is just
too much work, and I lose all the styling; while Evernote clip-
per clips the entire page, which is equivalent to not saving
anything at all [because] I’d have to re-find it later.”); main-
taining provenance (P15: “...whenever I save something, I
always forget to also save the URL [of the source].”); synthe-
sizing the new with existing content (P9: “Evernote dumps
everything I clip into a list of notes. There’s no way for me to
organize them.”); and guiding their exploration processes (P1:

“... sometimes there’s just so much [evidence to find] that I often
don’t have a clue about what I’m supposed to search next.”).
Additionally, participants reported that another disadvantage
of using Google Docs or other applications like Evernote is
that they must switch to another browser tab or application to
access and organize their collected information. Such frequent
context switches are tedious and have been shown to harm
developers’ productivity [29, 34, 47]. These findings inspired
us to help developers easily externalize their mental models
when they are searching and browsing, by providing an easier
method of tracking and deciding among available options.

Almost half (7/15) of the participants admitted that they do
not document their decisions anywhere. An additional three
said that they would only record important source URLs in
code comments. Interestingly, participants also discussed the
difficulties in code comprehension, particularly when trying
to understand code written by others that involved unexpected
decisions. They attributed the frustrations primarily to being
unable to uncover the context of the decisions and the orig-
inal trade-offs, and fearing they might accidentally violate
important yet hidden constraints that guided the original de-
cision, which is congruent with prior research [38, 39]. This

motivated Unakite to automatically keep track of the initial de-
veloper’s decision making trails as the design rationale, unlike
prior work where developers are forced to manually create
documentation of decisions after they are made [51, 66].

Analysis of Stack Overflow
Stack Overflow (SO) is an important tool for answering pro-
gramming questions, and participants cited it as their most
frequently visited resource. Given this motivation, we under-
took an analysis to assess the proportion of questions on SO
which capture trade-offs among multiple options and to deter-
mine if the tabular format identified in the interviews is indeed
an appropriate structure for synthesizing these trade-offs.

We utilized two sets of posts for this analysis. First, we queried
the 50 most viewed questions. We were concerned about this
sampling method as it may only represent a narrow set of
topics which happen to be the most popular, whereas the
average developer may have more niche interests [14]. To
obtain a sample of questions with a variety of topics that
may be more representative of the interests of the general
population, we collected another 90 questions by querying
for posts created on a particular day which contained three
or more answers. Through manual analysis and construction
of comparison tables using spreadsheets, we found that the
trade-offs contained in 88% of the 50 most-viewed and 49% of
the 90 general population questions along with their answers
could be reasonably organized into tables. In fact, we found
that some answers already included tables to summarize the
trade-offs among the options, e.g., [1, 2]. Together with the
results from the interviews, these findings motivated the design
of Unakite’s organization features that let users synthesize
information about trade-offs into comparison tables.

Summary of Design Goals
Led by our formative studies findings and prior research, we
hypothesize that an effective interface for decision making
about trade-offs while searching and browsing should support:

• Scaffolding: helping developers form systematic models
when approaching decision making problems with trade-
offs.

• Lightweight interactions: reducing the cost of collecting
and organizing content so that the entry barriers for devel-
opers to use the tool are low.

• Summarization: helping developers synthesize and sum-
marize different pieces of content together and manage
them, as suggested by prior work [73, 72, 49].

• Contextualization: enabling developers to recreate the con-
text from which information snippets were collected and
copied for better sensemaking [53, 62, 58].

UNAKITE
Guided by the design goals above, Unakite enables developers
(both experienced and novice) to easily collect any content
from any web page into snippets (pieces of information) and
organize them by options, criteria, and evidence as they are
searching and browsing the web, and thereby keep track of
their decision-making trails for later reference. Unakite is an
extension to the Chrome Web browser and a web application.

Define a snippet by drawing a bounding
box around the desired content.1

Use the defined snippet as
a negative piece of
evidence by clicking on
the “thumbs-down” icon.

2

Figure 2: “Teleporting” content directly into the comparison table as a
piece of evidence.

We first illustrate the experience of using Unakite by describ-
ing a sample usage scenario that embodies many of the use
cases identified in our formative studies.

The Unakite User Experience
Sara, a junior professional developer, is tasked with writing
Python code to handle matrix calculations for her company.
As the code will be used in production, she wants to determine
the best way to represent matrices using numpy [4] before
starting the implementation. She decides to use Unakite to
help her stay organized during her exploration process.

Sara logs into Unakite, enables it on her current web pages,
brings out the Unakite sidebar (Figure 1-e), and selects “Create
a new task”, entering “how to represent matrices in numpy” as
the task name. Next, she starts a Google search on this topic.

As she goes through the search results, she comes across an
SO page about the differences between numpy matrix and
numpy array. She then quickly collects text describing both
numpy matrix and numpy array into the task snippet repository
by just selecting the text and click the “Save to U” button that
pops up (Figure 1-a1). The collected snippets immediately
appear under the “Uncategorized” tab (Figure 1-c).

Continuing on, she comes across several criteria that seem
to be good standards to evaluate which of the two options
she just discovered is better. For example, she thinks that
“having a convenient notation for matrix multiplication like
a*b” is essential for the readability of the code. Therefore,
Sara collects those criteria using the same mechanism.

As the number of collected snippets gets larger, Sara decides
to quickly organize them by simply dragging and dropping
each snippet into the comparison table (automatically created
along with the task) above the snippet repository in the sidebar
(Figure 1-b). For example, she drags numpy matrix into one
of the row headers as an option (e.g., a possible solution to
solve the task). After a basic table structure is laid out, she
realizes that an optimal method should not be deprecated in
the future, so she clicks the blue “plus” button to create a
new column and types in “having long-term support” as a new
criterion. As it’s not one of her immediate concerns, she drags
that column to be the last one in the table.

To save a section of the SO page that compares the two op-
tions in terms of the criteria she just collected, Sara uses the
snapshot feature (holding the Option / Alt key and using the

mouse to drag on screen) to draw a bounding box around that
section (Figure 1-a2). Instead of clicking the “Save to U” but-
ton to save it as a snippet and then drag it into the table (which
she certainly can), Sara uses the teleport feature (Figure 2) by
clicking on one of the rating icons in the corresponding table
cells to directly save the snapshot as a snippet and use it as a
piece of evidence. For example, she gives numpy matrix a
“thumbs-up” (positive rating) for “having a convenient nota-
tion for matrix multiplication like a*b” and numpy array a
“thumbs-down” (negative rating) for “having built-in support
for inverse and other matrix operations”. Alternatively, devel-
opers could also label a snippet as “informational” if it does
not have a positive or negative effect on their decision (Figure
1-f1,f2,f3).

After filling up the table with options, criteria, and ratings
(evidence), Sara now feels clear that numpy matrix should be
the better choice, so she clicks the green “Choose this option”
button (Figure 1-b1) next to that option to indicate it was
chosen. She wants to document her decision in the company’s
internal documentation site. The table she organized, along
with all the information snippets she collected, is automatically
preserved by Unakite for the current task. She clicks the
“Open task detail page” button to open the task in the Unakite
dashboard web app, copies the URL from the address bar,
and pastes it into her code documentation with “Here’s how I
decided to choose numpy matrix”.

A year later, Larry comes in and reads the code along with
the Unakite table that Sara created. He glances the ratings
and checks the evidence snippets by mousing over the rating
icons. He quickly understands Sara’s decision, and realizes the
opportunity to switch to using a numpy array since now the
code needs to be able to perform vector operations in arbitrary
dimensions and be supported in the long term, both of which
are criteria that Sara identified previously.

Detailed Design
We now discuss how the different features in Unakite support
the design goals listed previously.

Scaffolding
Unakite provides developers with scaffolding when managing
decision making tasks that involve trade-offs by offering the
“Option-Criterion-Evidence” (OCE) framework as illustrated
in the example scenario. A user can create as many tasks
as desired, where typically each task represents a different
decision. For each task, the information is organized in a
tabular format (Figure 1-b) where options are the row headers,
criteria are the column headers, and pieces of evidence are
spread across the rest of the cells.

We provide this framework for several reasons. As mentioned
in the interview study results, developers’ mental model for
capturing trade-offs is similar, but less organized, to that de-
scribed in this framework. Formalizing it provides a concrete
framing for developers to think about decisions in a structured
way that they are already familiar with. Another aim of pro-
viding this structured framework is to encourage developers to
think about trade-offs from the start to avoid the unnecessary
frustrations later on (as described in the interview results).

Lightweight Interactions
Unakite offers various lightweight interactions to collect infor-
mation and organize them according to the OCE framework.
It provides two intuitive ways to collect any content from any
web page. The first is selecting the desired content using the
cursor in the normal way, and then clicking the “Save to U”
button that pops up (Figure 1-a1). Another way to collect large
pieces of information (code snippets that span multiple lines,
columns or sub-sections of tables, pictures, etc.) is to use the
snapshot feature: drawing a bounding box around the desired
content (Figure 1-a2 and Figure 2) and clicking the “Save to
U” button. These interactions are carefully designed based on
developers’ natural habits of copying-and-pasting content and
links and taking screenshots without introducing an extra cog-
nitive load of learning a new interaction, and thereby reducing
the starting cost for developers to use Unakite.

Unlike previous tools where information was saved either
in pure text format [37, 36] or as raw HTML without CSS
styling [71], Unakite combines the best of both copying-and-
pasting and taking screenshots by capturing, saving and later
showing the content of a snippet with its original styling and
including the rich, interactive multimedia objects supported
by HTML, like images and links. This feature makes the
content in snippets more understandable and useful, and also
helps developers quickly recognize a particular snippet among
many others in the repository by its appearance. Typically,
developers will include example code in the snippets as copied
from SO and other sources, and Unakite is careful to preserve
the formatting of the code, so it can later be copy-and-pasted
into the user’s code once a decision to use it has been made.

The collected snippets will be displayed in the current tasks’
snippet repository (Figure 1-c), which serves as a container
that holds all the collected snippets in the form of snippet cards
(Figure 1-d). One of the benefits of having this repository is
that it serves as an information buffer between the web and
the comparison table: as recommended by Kittur et al. [37], a
“two-stage” model in which information is first saved and then
organized, results in a better “structured information space”.

To solve the problem of frequent context switches (identified
in the interview study), Unakite brings the ability to access
and organize collected information directly into the browser
tab that the developer is currently using – Unakite provides a
sidebar (inspired by [67, 68]) on the right side of the current
window (Figure 1-e) containing the comparison table (Figure
1-b) and the aforementioned snippet repository. There are
several major advantages for developers using the Unakite
sidebar. It serves as a comprehensive dashboard that contains
both the collected information and the ability to organize them
into comparison tables (discussed later in detail) all in a small
footprint. Unlike PlayByPlay [71] in which the sidebar lives in
a part of the browser UI, Unakite’s sidebar is directly injected
into the DOM tree and therefore can provide rich interactions
with the original web page. The sidebar can be toggled in
and out like a drawer using the keyboard shortcut Ctrl + `
(backtick) or using the “Open/Close Unakite Sidebar” button
on the bottom right of the window. When it opens, it automat-

Once a snippet is selected (showing a red
border), its locations in the table are highlighted.

Figure 3: A snippet used as evidence in multiple table cells. Selecting a
snippet will highlight its location(s) in the table.

ically shrinks the width of the web page body to make sure
nothing is visually hidden.

Unakite provides easy and intuitive interactions such as drag-
and-drop, allowing users a variety of ways to quickly organize
the collected information into a comparison table. A developer
can drag a snippet card from the snippet repository and drop
it into the table as either a row header (so it is an option),
a column header (as a criterion), or into a cell as a piece of
evidence, just as Sara did. Inspired by prior work [49], one can
“rate” a snippet as either a positive (shown as a “thumbs-up”
rating icon, see Figure 1-f1), negative (shown as a “thumbs-
down” rating icon, see Figure 1-f2), or informational (shown
as an “info” rating icon, see Figure 1-f3) piece of evidence.
Moreover, a snippet can be reused as the evidence in multi-
ple cells. Selecting a snippet (by clicking on it, see Figure
3) in the snippet repository will reveal its location(s) in the
comparison table, and selecting an icon in the table opens the
corresponding snippet in the repository.

There are two additional shortcuts to put snippets directly into
a table. To collect some content as an option or a criterion, one
can mouse over the “Save to U” button and click the “Option”
or the “Criterion” button (Figure 4) that appears below. This is
modeled after the various options for “liking” in Facebook. In
addition to collecting the desired content as a snippet, this will
automatically create a new row or column in the comparison
table. Another shortcut is the teleport feature that Sara used
above (Figure 2). These shortcuts are enabled by and add addi-
tional benefits to Unakite’s always-available sidebar. Together
with the other features described above, users have the flexi-
bility to capture and organize their knowledge in various ways
and in any order without needing to follow a preset process.

As illustrated in the example scenario, every Unakite task,
including all of its snippets and comparison tables, can be
accessed in the Unakite web app via a unique URL in any
browser. This makes sharing and keeping track of one’s deci-
sion easier and more powerful: developers can choose to share
the link to a task via email to their friends and colleagues to
show how and why the decision was made, and the link can be
embedded in documentation or comments in code, preserving
the actual trade-offs and design rationale in addition to where
any example code was copied from.

Summarization
Unakite introduces several levels of summarization to help
developers manage and digest information.

The comparison table provides a high-level summary of the de-
cision making space and the trade-offs among various options.
It offers a clear and glanceable picture of the advantages and

Figure 4: Mousing over the “Save to U” clip button will reveal three
additional buttons to collect the desired content specifically as a snippet,
an option, or a criterion.

disadvantages of each option through the “thumbs-up” and
“thumbs-down” rating icons without having to expose the nitty-
gritty details of the evidence content, which is useful both
for the developer making the decision and later code readers,
as shown in the example scenario. Additionally, it serves as
a presentation of one’s exploration progress that helps users
understand which part of the decision space has been explored
and which has not (revealed in the interview studies as an im-
portant clue developers need when exploring multiple options).
For example, the empty cells in the table provide developers
with clues about where they need to focus next.

The individual rating icons provide another level of summary
of their corresponding supporting evidence. Unlike in previ-
ous summarization tools [73] where contents are recursively
summarized into words, Unakite encourages the user to parse
out the information in a snippet that captures the relationship
between an option and a criterion, and represent them as rating
icons. We believe this mechanism can usually capture develop-
ers’ information needs of whether an option satisfies a specific
criterion, as identified in the formative interviews. One can
also manually add a rating leveraging their prior knowledge
directly in the table by clicking the “Add a snippet” button on
the top right of the table cells, and just type or paste. To dig
into the detailed evidence of each rating, users can simply click
on those icons in the sidebar tables or mouse over the icons
in the Unakite web app to reveal the supporting snippet card.

In addition to the built-in summarization mechanisms above,
Unakite also enables users to note down their own summaries
in various places. Users can easily edit the snippet title (Figure
1-d1) in the snippet card to be something more summative. For
example, for a long snippet that talks about the performance
advantages of React [24] over Angular [30], a user may sum-
marize it as “React apps load faster than Angular ones.” There
is also a text box in each table cell for users to summarize
all the evidence in that cell or keep track of the evidence that
cannot easily be captured by rating icons, such as prices and
speed. Moreover, one can add comments to snippets (Figure
1-d4), table cells, and tasks about their opinions, thoughts, or
the results of their experiments with an option, etc. These
were added based on feedback that developers needed more
flexibility to add comments and content in many places.

Contextualization
Meta information such as the URL of the source web page
(Figure 1-d2) and the time of collection (Figure 1-d3) are
automatically recorded along with the snippet and displayed on
the snippet card in Unakite. Using this feature, developers are
able to go back to the web page where a snippet was collected.
Unakite will even help developers to go back to the exact
scroll position where the snippet was collected if possible,
saving the extra effort of locating it on a web page. The time
when a snippet was collected is especially useful in giving

manually created snippets / # snippets # options # criteria # ratings # positive ratings # negative ratings # info ratings
Task 1 0.70 (1.34) / 12.10 (3.38) 2.30 (0.67) 2.70 (1.57) 8.80 (4.10) 3.00 (1.89) 1.80 (2.30) 4.00 (3.80)
Task 2 1.20 (3.16) / 17.50 (4.48) 2.60 (0.52) 4.60 (2.07) 13.20 (4.42) 7.70 (4.08) 2.60 (2.46) 2.90 (2.42)
Task 3 2.00 (3.77) / 18.89 (8.31) 3.74 (1.37) 4.74 (2.58) 12.58 (8.87) 6.37 (5.24) 3.84 (4.29) 2.37 (2.52)

Table 1: Statistics for various Unakite feature usages in Study 1. Statistics are presented in the form of mean (standard deviation) in the table.

developers a rough estimate of the age of the information
and helping them determine whether it is still valid (e.g., API
methods might be deprecated or trade-offs might change in
newer library versions).

Implementation
Both Unakite’s Chrome browser extension and the web appli-
cation are implemented in HTML, JavaScript, and CSS, using
the React JavaScript library [24]. Unakite utilizes Google’s
Firebase for hosting, user authentication and data persistence.

EVALUATION
We conducted two initial user studies of the Unakite system in
order to answer the following questions:

• Can developers collect and organize information using
Unakite?

• How does Unakite compare to currently available tools like
Google Docs?

• Do Unakite tables offer value over just reading through
web pages when trying to understand the design rationale?

• How can the design of Unakite be improved?

Both studies are approved by our institution’s IRB office.

Study 1 - Authoring Unakite Tables
We carried out a study to evaluate developers’ ability to use
Unakite to collect and organize information about trade-offs.

Procedure
We recruited 20 participants (15 male, 5 female) aged 23-37
(µ = 26.75, σ = 3.49) from a local research participation pool.
The participants were required to be 18 or older, to be fluent
in English, and to be experienced in programming. Partici-
pants had on average 8.8 years of programming experience,
with the longest being around 15 years. 13 participants had
professional programming experience, with the rest having
experience in college.

In this study, participants were first presented with two tasks
each: (A) how to invoke a function in JavaScript and (B) how
to create or update a resource using REST APIs. For each task,
they started from scratch without using any information snip-
pets from previous tasks. The study was a between-subjects
design, where participants were randomly assigned to either
the Unakite or the control condition. In the Unakite condition,
participants were given a static web page adapted from a real
Stack Overflow page discussing the task topic in each task.
Participants were asked to use Unakite to collect and organize
information from that single page into a comparison table, and
were instructed to inform the researcher when they thought
they had finished the task or felt like they could make no fur-
ther progress. In the control condition, participants were asked
to do the same but to build comparison tables using Google
Docs instead. We deemed Google Docs as a proper baseline
since: 1) it was reported in the formative study as a common

tool people use to take notes while making decisions; 2) all
participants in this user study were already proficient in using
it; 3) compared to other solutions like spreadsheets, it can be
easily used to capture richer contexts such as formatted text
(example code), images (screenshots of execution results), and
links (URLs of documentation and tutorial pages).

All participants were then given a third task in which they were
asked to use Unakite to help them understand the trade-offs
and make decisions on whatever programming problems they
were trying to solve in real life.

Participants in the Unakite condition were given a 10-minute
tutorial showcasing the various features of Unakite and a 5-
minute practice session before starting. Those in the control
condition were given the same tutorial and practice session
before the third task. At the end of the study, the researcher
conducted a survey and an interview eliciting subjective feed-
back on the Unakite experience. In particular, participants
were asked to list 3 of their favorite features as well as 3
least favorite features or possible improvements of Unakite.
The study took about 80 minutes per participant, using a des-
ignated MacBook Pro computer with Chrome and Unakite
installed. All tasks were screen-recorded for later analysis. All
participants were compensated $20 for their time.

Results
All participants were able to complete all of the tasks in both
conditions. As shown by the statistics in Table 1, the Unakite
participants were able to use the various features to collect and
organize information into comparison tables.

To examine how Unakite performs compared to the control
condition, we opted to compare the overhead cost of using
both tools to collect and organize information. For the Unakite
condition, the overhead cost is defined as the portion of the
time participants spent on directly using Unakite features (se-
lecting, snapshotting, dragging snippets into the comparison
table, etc.) out of the total time they used for a task, since the
rest of the time was spent reading and understanding the Stack
Overflow page. Similarly, for the control condition, the over-
head cost was calculated as the percent of time participants
spent on copy-and-pasting content, making screenshots, and
staying on the Google Docs browser tab to organize the table.

We conducted a mixed-effect linear regression with overhead
cost as the outcome, condition, task, and their interaction as
fixed effects. Since participants may have different abilities
in performing the tasks, we included a random intercept for
each participant. Results show that the overhead cost when
using Unakite is significantly lower (coefficient = −0.22,
t(18) = −4.81, p = 0.0001) than the control condition, while
task (coefficient = −0.05, t(18)= −1.40, p = 0.1777) and the
interaction term (coefficient = 0.04, t(18)= 0.71, p = 0.4861)
does not have an effect on the overhead cost. Across both tasks,
the average overhead cost was reduced by 45% when using

Unakite

Control

50 100 150 200 250 300 350 400
Time (in seconds)

Figure 5: Participant P13’s comparison table capturing the trade-offs in
choosing JavaScript front-end frameworks.

Unakite (Mean overhead cost = 25%, SD = 0.07) compared
to using Google Docs (Mean = 44%, SD = 0.12). Thus, using
Google Docs did add a lot of extra time, whereas using Un-
akite, even though unfamiliar, was quick and non-disruptive.

In the survey, participants reported (in 7-point Likert scales)
that they thought the interactions with Unakite were under-
standable and clear (Mean = 6.20, Median = 6.00, 95% CIs =
[5.84, 6.56]), they enjoyed Unakite’s features (Mean = 6.00,
Median = 6.00, 95% CIs = [5.52, 6.48]), and would recom-
mend Unakite to friends and colleagues doing programming
work (Mean = 6.20, Median = 6.50, 95% CIs = [5.75, 6.65]).

Nine of the 20 participants requested that we send them the
URL of their third task that they created using Unakite for ref-
erence and five of them asked us to help them install Unakite
on their computer for personal use and future updates, high-
lighting both the utility of the system as well as the realism of
the tasks they chose. Figure 5 shows P13’s table capturing the
trade-offs in choosing JavaScript front-end frameworks.

Another highlight in the study is that P3, P10, and P18 decided
to either commit or switch to the option they identified as the
best option after using Unakite to build comparison tables on
the topic of their choosing. For example, P3 researched on
hybrid AR development frameworks that can take advantage
of both ARCore [5] on Android and ARKit [6] on iOS, and
found ViroReact [12] to be the best choice. A quick follow-
up interview a week later revealed that he had already begun
using that framework, and it did satisfy all of his needs so far.

Study 2 - Understanding Unakite Tables
We carried out a second study to evaluate whether developers
could understand the trade-offs encapsulated in comparison
tables and snippets previously built by others using Unakite.

Procedure
We recruited 16 participants (9 male, 7 female) aged 21-32 (µ
= 25.3, σ = 3.19) from the same local participation pool as in
Study 1 (but no-one participated in both studies). Participants
had on average 7.8 years of programming experience, with
the longest being 17 years. None of them were familiar with
either the topics involved in this study or Unakite. The study
took about 40 minutes per participant, using the same setup as
in Study 1. All participants were compensated $15.

Participants were given a 10-minute tutorial showcasing the
various features of the Unakite web app. The study was a
within-subjects design, where the participants were presented
with two tasks of roughly equal difficulty and were asked to
solve one of them with the help of Unakite and the other by
reading through a set of web pages, in a counterbalanced order.
For each task, participants were given some code written by
the researcher to solve a problem, some necessary background

Figure 6: Box plot of the average task completion time for the partici-
pants under different conditions: Unakite vs. Control in Study 2.

information about the problem, and a list of options that were
available to solve it. They were then asked to explain why
the decision was made to choose the particular option used
in the code and the associated trade-offs. In the experimen-
tal condition, participants were provided with a previously-
built structure (including the comparison table and the snippet
repository) through the Unakite web app, while in the control
condition, participants were instructed to only read through
the set of web pages that the structure in the experimental
condition was built from. Specifically, the two tasks were to
explain the decision and the trade-offs of:

• Choosing numpy array with Python 3.5+ instead of
numpy matrix or numpy array with Python 2.7 to
perform some matrix calculations like multiplication, inver-
sion, element-wise multiplication, etc.

• Choosing numpy array instead of Python list or
Python array to hold data involved in large-scale numeri-
cal manipulations such as regression analysis.

To ensure realism, both tasks were based on actual questions
asked and answered on Stack Overflow that are heatedly dis-
cussed and well-maintained by real developers.

Results
Two researchers each listed all possible explanations to the
two tasks independently. After resolving conflicts, we pro-
duced a list of possible explanations for each task as the gold
standard. To quantitatively evaluate participants’ performance,
we measured the time it took for them to offer three legitimate
explanations - those within the gold standard list - in each
condition, which all participants were able to accomplish.

A two-way repeated measures ANOVA was conducted to ex-
amine the within-subject effects of condition (Unakite vs. Con-
trol) and task (A vs. B) on task completion time. There was a
statistically significant effect of condition (F(1,26) = 25.59,
p < .001) such that participants completed tasks significantly
faster (almost 3 times faster) with Unakite (Mean = 114.63s,
SD = 38.91s) than in the control condition (Mean = 332.56s,
SD = 56.26s), as visualized in Figure 6. There was no signifi-
cant effect of task (F(1,26) = 0.01, p = 0.94), indicating the
two tasks were indeed of roughly equal difficulty.

Evaluation Discussion
Usability and Usefulness of Unakite’s features
The snippet collection features, including both the selecting
and the snapshot features, were considered highly useful, with
15 participants citing them as one of their favorite features.
Participants said they were “the perfect combination of copy-
pasting and taking screenshots” (P15) with the additional
benefits of “retaining the original styling [of the collected
content], especially when there’s code” (P9), “keeping track
of the [source] URL” (P7), and “saving [users] some typing”

(P5). The drag-and-drop interactions were also popular, re-
ceiving 13 mentions in participants’ “top three” lists, primarily
due to its ease of use (P18: “it is natural, like picking things up
and dropping them in buckets”). Participants also appreciated
that the design of the Unakite UI is clean and easy to learn
(12/20), and the overall experience was satisfying (10/20). The
sharing via URL feature also received nine mentions, with par-
ticipants laying out potential usage scenarios like “putting it in
code comments or [their lab’s] internal documentions” (P11),

“using it for presentations in code reviews” (P8), “attaching it
in emails that explain my code” (P5), etc.

Compared with using Google Docs, P15 praised the value of
Unakite’s snippet repository functioning as an information
buffer: “It’s like a note-taking space. I can just easily grab
as much info that’s related to my topic as I want, and they
don’t have to directly fit into the table, but can be something
interesting to use later on; whereas in Google Docs, the cost of
buffering these interesting snippets somewhere is pretty high.”

Participants have mixed opinions on how summarization
works in Unakite. Most of them (16/20) agreed that sum-
marizing snippets into positive, negative, or informational
icons alleviates their burden of having to manually look at the
content of each snippet every time, and makes the compari-
son tables much more skimmable, e.g., “visual interpretation
of thumbs ups and downs provides a quick summary” (P18).
However, P17 also pointed out that “value comparisons be-
tween criteria (columns) are difficult,” suggesting some notion
of weight should be applied differently to the columns when
construing the table. P3 indicated that the meaning for the
thumbs-up/down icons is open for interpretation in a sense
that “having more thumbs-ups does not necessarily mean [that
an option] is better [in terms of a criterion], it could simply
mean that the author found more positive evidence, unless she
specifies that [more means better] in the first place.” Based on
these valuable insights, we believe that there are new interface
design opportunities for us to explore in Unakite so that the
value of the comparison tables could be further improved.

Usage Patterns
Similar to what Morris et al. found [49], there was an unbal-
anced use of the positive and negative ratings in the study:
positives (228 in total) are more heavily used than negatives
(117 in total). A possible explanation for this asymmetry is
that people in general lean towards finding and keeping track
of evidence of what “works” rather than what “doesn’t work”.

Participants exhibited two major usage patterns when interact-
ing with Unakite: (1) collecting-oriented: alternating between
long collecting stages (in which they keep collecting content
into the snippet repository) and short organizing stages (in
which they focus on putting the collected snippets into the
comparison table); or (2) organizing-oriented: all snippets go-
ing directly into the comparison table immediately after they
are collected. We are delighted that interactions in Unakite are
flexible enough to support both usage patterns equally well.

The studies showed some evidence that Unakite might also be
used for other tasks like comparison shopping for electronics
or makeup, even though they are not the focus of Unakite.

CONCLUSION AND FUTURE WORK
Through designing and evaluating Unakite, we gained deeper
insights into people’s frustrations and needs towards making
sense of programming trade-offs on the web. This could pave
a path for future work.

Seven of the participants (Study 1 & 2 combined) who were in-
volved in decision making processes in the industry suggested
that Unakite has the potential to become a collaborative plat-
form for developers to cooperate on decision making processes.
This is in line with our vision to add support in Unakite for
both asynchronous and synchronous collaborations in the fu-
ture. Presently, Unakite focuses on recording a static snapshot
of a single developer’s decision making trails that is read-only
to other developers. In future iterations, we would like to
work on mechanisms that enable later developers to “own” or
“contribute” to the structures so that they stay relevant and
informative throughout the course of a software engineering
project. For example, inspired by Git and other local version
control tools such as Variolite [35], we can explore the op-
portunity of introducing lightweight versioning into Unakite,
possibly integrated with code versions, thereby realizing asyn-
chronous collaborations. Suggested by collaborative systems
like SearchTogether [49] and CoSense [53], additional “aware-
ness” and “division of labor” features can be implemented to
transform Unakite into a synchronous collaboration platform.

To support cases in which the needs for collecting and orga-
nizing information are not discovered until partway through
an investigation process, we will also explore automatically
summarizing exploration paths in the background so that de-
velopers can retroactively organize their work with reduced
overhead.

We also plan to investigate the use of Unakite as a pedagogical
tool. Many areas of computer science (e.g., data structures,
systems) require students to consider different options in terms
of trade-offs, rather than determining a single correct answer.
Anecdotally, many students find this difficult. The exercise
of creating a comparison table to explicitly compare multiple
options for a task (e.g., using a stack or a queue to build an
undo function) would force students to explicitly determine
the criteria necessary for the task, gather evidence to support
ratings, and make an educated decision based on these ratings.

Several participants mentioned in the interviews that Unakite’s
is “useful in terms of helping [them] form mental models”
(P4) while searching, especially when there are a lot of equally
plausible choices involved. However, P15 also pointed out
that the table structure is “ a double-edged sword” in a sense
that it promotes structured thinking but also “forces [users]
to follow a fixed pattern.” In light of these mixed opinions,
we would like to leverage the Unakite platform to conduct
a long-term field study with two specific goals in mind: (1)
exploring the possibility of making the current version of Un-
akite an intervention mechanism to promote a structured way
of approaching decisions about trade-offs and help developers
form the habit of staying organized; and (2) exploring different
schema of knowledge representation other than tables such
as decision trees that could also support developers’ decision
making about trade-offs and beyond.

ACKNOWLEDGMENTS
This research was supported in part by NSF grant CCF-
1814826, Google, Bosch, and the CMU Center for Knowl-
edge Acceleration. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.
We would like to thank our study participants for their kind
participation and our anonymous reviewers for their insightful
feedback. We are grateful to Felicia Y. Ng and Xu Wang for
their assistance on analyzing the study results, and Dr. Wal-
ter S. Lasecki, Fanglin Chen, Toby Jia-Jun Li, Haojian Jin,
Joseph Chee Chang, Yunpeng Song, Yasha Iravantchi, Shiyan
Yan, and Siying Feng for their valuable feedback and constant
support.

REFERENCES
[1] 2009a. PUT vs. POST in REST. (2009).

https://stackoverflow.com/a/32524385

[2] 2009b. Which equals operator (== vs ===) should be
used in JavaScript comparisons? (2009).
https://stackoverflow.com/a/26923895

[3] 2012. Google Notebook. (2012).
https://www.google.com/googlenotebook/faq.html

[4] 2018. NumPy — NumPy. http://www.numpy.org/

[5] 2019a. ARCore - Google Developer | ARCore. (2019).
https://developers.google.com/ar/

[6] 2019b. ARKit - Apple Developer. (2019).
https://developer.apple.com/arkit/

[7] 2019c. Front-end JavaScript frameworks. (2019).
https://github.com/collections/
front-end-javascript-frameworks

[8] 2019d. Getting started with machine learning. (2019).
https://github.com/collections/machine-learning

[9] 2019e. Programming languages. (2019).
https://github.com/collections/programming-languages

[10] 2019f. PyTorch. (2019). https://www.pytorch.org

[11] 2019g. TensorFlow. (2019).
https://www.tensorflow.org/

[12] 2019h. ViroReact. (2019).
https://viromedia.com/viroreact

[13] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B.
Bruegge. 2018. How do developers discuss rationale?. In
2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER).
357–369. DOI:
http://dx.doi.org/10.1109/SANER.2018.8330223

[14] Michael S. Bernstein, Jaime Teevan, Susan Dumais,
Daniel Liebling, and Eric Horvitz. 2012. Direct Answers
for Search Queries in the Long Tail. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY,
USA, 237–246. DOI:
http://dx.doi.org/10.1145/2207676.2207710

[15] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. 2010. Example-centric Programming:
Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’10).
ACM, New York, NY, USA, 513–522. DOI:
http://dx.doi.org/10.1145/1753326.1753402

[16] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two Studies of
Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09). ACM, New York, NY, USA,
1589–1598. DOI:
http://dx.doi.org/10.1145/1518701.1518944
event-place: Boston, MA, USA.

[17] Joseph Chee Chang, Nathan Hahn, and Aniket Kittur.
2016. Supporting Mobile Sensemaking Through
Intentionally Uncertain Highlighting. In Proceedings of
the 29th Annual Symposium on User Interface Software
and Technology (UIST ’16). ACM, New York, NY, USA,
61–68. DOI:http://dx.doi.org/10.1145/2984511.2984538

[18] Kathy Charmaz. 2006. Constructing Grounded Theory:
A Practical Guide through Qualitative Analysis. SAGE.
Google-Books-ID: 2ThdBAAAQBAJ.

[19] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang,
Walter S. Lasecki, and Steve Oney. 2017. Codeon:
On-Demand Software Development Assistance. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 6220–6231. DOI:
http://dx.doi.org/10.1145/3025453.3025972

[20] Yan Chen, Steve Oney, and Walter S. Lasecki. 2016.
Towards Providing On-Demand Expert Support for
Software Developers. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 3192–3203.
DOI:http://dx.doi.org/10.1145/2858036.2858512

[21] Luis Fernando Cortés-Coy, Mario Linares-Vásquez,
Jairo Aponte, and Denys Poshyvanyk. 2014. On
Automatically Generating Commit Messages via
Summarization of Source Code Changes. In
Proceedings of the 2014 IEEE 14th International
Working Conference on Source Code Analysis and
Manipulation (SCAM ’14). IEEE Computer Society,
Washington, DC, USA, 275–284. DOI:
http://dx.doi.org/10.1109/SCAM.2014.14

[22] Simon P Davies. 1993. Externalising Information
During Coding Activities: Effects of Expertise,
Environment and Task. In Empirical Studies of
Programmers: Fifth Workshop, Curtis R Cook, Jean C
Scholtz, and James C Spohrer (Eds.). Ablex Publishing
Corporation, Palo Alto, CA, 42–61.

[23] Mira Dontcheva, Steven M. Drucker, Geraldine Wade,
David Salesin, and Michael F. Cohen. 2006.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1814826
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1814826
https://stackoverflow.com/a/32524385
https://stackoverflow.com/a/26923895
https://www.google.com/googlenotebook/faq.html
http://www.numpy.org/
https://developers.google.com/ar/
https://developer.apple.com/arkit/
https://github.com/collections/front-end-javascript-frameworks
https://github.com/collections/front-end-javascript-frameworks
https://github.com/collections/machine-learning
https://github.com/collections/programming-languages
https://www.pytorch.org
https://www.tensorflow.org/
https://viromedia.com/viroreact
http://dx.doi.org/10.1109/SANER.2018.8330223
http://dx.doi.org/10.1145/2207676.2207710
http://dx.doi.org/10.1145/1753326.1753402
http://dx.doi.org/10.1145/1518701.1518944
http://dx.doi.org/10.1145/2984511.2984538
http://dx.doi.org/10.1145/3025453.3025972
http://dx.doi.org/10.1145/2858036.2858512
http://dx.doi.org/10.1109/SCAM.2014.14

Summarizing Personal Web Browsing Sessions. In
Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology (UIST ’06).
ACM, New York, NY, USA, 115–124. DOI:
http://dx.doi.org/10.1145/1166253.1166273

[24] Facebook. 2018. React - A JavaScript library for
building user interfaces. (2018). https://reactjs.org/

[25] Beat Fluri, Michael Wursch, and Harald C Gall. 2007.
Do Code and Comments Co-Evolve? On the Relation
between Source Code and Comment Changes. In 14th
Working Conference on Reverse Engineering (WCRE
2007). IEEE, 70–79.

[26] Beat Fluri, Michael Wursch, Emanuel Giger, and
Harald C Gall. 2009. Analyzing the co-evolution of
comments and source code. Software Quality Journal
17, 4 (Dec. 2009), 367–394.

[27] Shane Frederick, George Loewenstein, and Ted
O’Donoghue. 2002. Time Discounting and Time
Preference: A Critical Review. Journal of Economic
Literature 40, 2 (June 2002), 351–401. DOI:
http://dx.doi.org/10.1257/002205102320161311

[28] Andreas Gizas, Sotiris Christodoulou, and Theodore
Papatheodorou. 2012. Comparative Evaluation of
Javascript Frameworks. In Proceedings of the 21st
International Conference on World Wide Web (WWW
’12 Companion). ACM, New York, NY, USA, 513–514.
DOI:http://dx.doi.org/10.1145/2187980.2188103

[29] Victor M. González, Gloria Mark, and Gloria Mark.
2004. "Constant, Constant, Multi-tasking Craziness":
Managing Multiple Working Spheres. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’04). ACM, New York, NY,
USA, 113–120. DOI:
http://dx.doi.org/10.1145/985692.985707 event-place:
Vienna, Austria.

[30] Google. 2019. Angular - One Framework. Mobile &
Desktop. (2019). https://angular.io/

[31] Nathan Hahn, Joseph Chee Chang, and Aniket Kittur.
2018. Bento Browser: Complex Mobile Search Without
Tabs. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI ’18). ACM,
Montreal QC, Canada, 251:1–251:12. DOI:
http://dx.doi.org/10.1145/3173574.3173825

[32] Ken Hinckley, Xiaojun Bi, Michel Pahud, and Bill
Buxton. 2012. Informal Information Gathering
Techniques for Active Reading. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,
1893–1896. DOI:
http://dx.doi.org/10.1145/2207676.2208327
event-place: Austin, Texas, USA.

[33] Raphael Hoffmann, James Fogarty, and Daniel S. Weld.
2007. Assieme: Finding and Leveraging Implicit
References in a Web Search Interface for Programmers.

In Proceedings of the 20th Annual ACM Symposium on
User Interface Software and Technology (UIST ’07).
ACM, New York, NY, USA, 13–22. DOI:
http://dx.doi.org/10.1145/1294211.1294216
event-place: Newport, Rhode Island, USA.

[34] Mik Kersten and Gail C. Murphy. 2006. Using Task
Context to Improve Programmer Productivity. In
Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(SIGSOFT ’06/FSE-14). ACM, New York, NY, USA,
1–11. DOI:http://dx.doi.org/10.1145/1181775.1181777
event-place: Portland, Oregon, USA.

[35] Mary Beth Kery, Amber Horvath, and Brad Myers.
2017. Variolite: Supporting Exploratory Programming
by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 1265–1276.
DOI:http://dx.doi.org/10.1145/3025453.3025626

[36] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, and
Michael Bove. 2014. Standing on the Schemas of Giants:
Socially Augmented Information Foraging. In
Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing
(CSCW ’14). ACM, New York, NY, USA, 999–1010.
DOI:http://dx.doi.org/10.1145/2531602.2531644

[37] Aniket Kittur, Andrew M. Peters, Abdigani Diriye,
Trupti Telang, and Michael R. Bove. 2013. Costs and
Benefits of Structured Information Foraging. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 2989–2998. DOI:
http://dx.doi.org/10.1145/2470654.2481415

[38] Andrew J Ko, Robert DeLine, and Gina Venolia. 2007.
Information Needs in Collocated Software Development
Teams. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 344–353.

[39] Thomas D LaToza, David Garlan, James D Herbsleb,
and Brad A Myers. 2007. Program comprehension as
fact finding. In ESEC/FSE 2007: ACM SIGSOFT
Symposium on the Foundations of Software Engineering.
361–370.

[40] Thomas D. LaToza and Brad A. Myers. 2010.
Hard-to-answer Questions About Code. In Evaluation
and Usability of Programming Languages and Tools
(PLATEAU ’10). ACM, New York, NY, USA, 8:1–8:6.
DOI:http://dx.doi.org/10.1145/1937117.1937125

[41] Thomas D. LaToza, Gina Venolia, and Robert DeLine.
2006. Maintaining Mental Models: A Study of
Developer Work Habits. In Proceedings of the 28th
International Conference on Software Engineering
(ICSE ’06). ACM, New York, NY, USA, 492–501. DOI:
http://dx.doi.org/10.1145/1134285.1134355

[42] John Lawrence, Jonas Malmsten, Andrey Rybka, Daniel
Sabol, and Ken Triplin. 2017. Comparing TensorFlow
Deep Learning Performance Using CPUs, GPUs, Local

http://dx.doi.org/10.1145/1166253.1166273
https://reactjs.org/
http://dx.doi.org/10.1257/002205102320161311
http://dx.doi.org/10.1145/2187980.2188103
http://dx.doi.org/10.1145/985692.985707
https://angular.io/
http://dx.doi.org/10.1145/3173574.3173825
http://dx.doi.org/10.1145/2207676.2208327
http://dx.doi.org/10.1145/1294211.1294216
http://dx.doi.org/10.1145/1181775.1181777
http://dx.doi.org/10.1145/3025453.3025626
http://dx.doi.org/10.1145/2531602.2531644
http://dx.doi.org/10.1145/2470654.2481415
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.1145/1134285.1134355

PCs and Cloud. Publications and Research (May 2017).
https://academicworks.cuny.edu/bx_pubs/50

[43] K. Lei, Y. Ma, and Z. Tan. 2014. Performance
Comparison and Evaluation of Web Development
Technologies in PHP, Python, and Node.js. In 2014
IEEE 17th International Conference on Computational
Science and Engineering. 661–668. DOI:
http://dx.doi.org/10.1109/CSE.2014.142

[44] W. Maalej and H. Happel. 2010. Can development work
describe itself?. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). 191–200.
DOI:http://dx.doi.org/10.1109/MSR.2010.5463344

[45] Mark Mahoney. 2017. Collaborative Software
Development Through Reflection and Storytelling. In
Companion of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing.
ACM, 13–16.

[46] Catherine C. Marshall and Sara Bly. 2005. Saving and
Using Encountered Information: Implications for
Electronic Periodicals. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’05). ACM, New York, NY, USA, 111–120. DOI:
http://dx.doi.org/10.1145/1054972.1054989
event-place: Portland, Oregon, USA.

[47] André N. Meyer, Thomas Fritz, Gail C. Murphy, and
Thomas Zimmermann. 2014. Software Developers’
Perceptions of Productivity. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 19–29. DOI:
http://dx.doi.org/10.1145/2635868.2635892
event-place: Hong Kong, China.

[48] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A.
Marcus, and G. Canfora. 2017. ARENA: An Approach
for the Automated Generation of Release Notes. IEEE
Transactions on Software Engineering 43, 2 (Feb. 2017),
106–127. DOI:
http://dx.doi.org/10.1109/TSE.2016.2591536

[49] Meredith Ringel Morris and Eric Horvitz. 2007.
SearchTogether: An Interface for Collaborative Web
Search. In Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’07). ACM, New York, NY, USA, 3–12. DOI:
http://dx.doi.org/10.1145/1294211.1294215

[50] Stephen Oney and Joel Brandt. 2012. Codelets: Linking
Interactive Documentation and Example Code in the
Editor. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’12). ACM,
New York, NY, USA, 2697–2706. DOI:
http://dx.doi.org/10.1145/2207676.2208664

[51] Soya Park, Amy X. Zhang, and David R. Karger. 2018.
Post-literate Programming: Linking Discussion and
Code in Software Development Teams. In The 31st
Annual ACM Symposium on User Interface Software
and Technology Adjunct Proceedings (UIST ’18

Adjunct). ACM, New York, NY, USA, 51–53. DOI:
http://dx.doi.org/10.1145/3266037.3266098
event-place: Berlin, Germany.

[52] Priyadarshini Patil, Prashant Narayankar, Narayan D.G.,
and Meena S.M. 2016. A Comprehensive Evaluation of
Cryptographic Algorithms: DES, 3DES, AES, RSA and
Blowfish. Procedia Computer Science 78 (Jan. 2016),
617–624. DOI:
http://dx.doi.org/10.1016/j.procs.2016.02.108

[53] Sharoda A. Paul and Meredith Ringel Morris. 2009.
CoSense: Enhancing Sensemaking for Collaborative
Web Search. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’09).
ACM, New York, NY, USA, 1771–1780. DOI:
http://dx.doi.org/10.1145/1518701.1518974

[54] Ksenia Peguero, Nan Zhang, and Xiuzhen Cheng. 2018.
An Empirical Study of the Framework Impact on the
Security of JavaScript Web Applications. In Companion
Proceedings of the The Web Conference 2018 (WWW
’18). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva,
Switzerland, 753–758. DOI:
http://dx.doi.org/10.1145/3184558.3188736
event-place: Lyon, France.

[55] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza.
2013. Seahawk: Stack Overflow in the IDE. In 2013
35th International Conference on Software Engineering
(ICSE). IEEE, San Francisco, CA, USA, 1295–1298.
DOI:http://dx.doi.org/10.1109/ICSE.2013.6606701

[56] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota,
Andrea Mocci, Rocco Oliveto, Massimiliano Di Penta,
and Michele Lanza. 2017. Supporting Software
Developers with a Holistic Recommender System. In
Proceedings of the 39th International Conference on
Software Engineering (ICSE ’17). IEEE Press,
Piscataway, NJ, USA, 94–105. DOI:
http://dx.doi.org/10.1109/ICSE.2017.17

[57] Paruj Ratanaworabhan, Benjamin Livshits, and
Benjamin G. Zorn. 2010. JSMeter: Comparing the
Behavior of JavaScript Benchmarks with Real Web
Applications. In Proceedings of the 2010 USENIX
Conference on Web Application Development
(WebApps’10). USENIX Association, Berkeley, CA,
USA, 3–3.
http://dl.acm.org/citation.cfm?id=1863166.1863169
event-place: Boston, MA.

[58] Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and
Stuart K. Card. 1993. The Cost Structure of
Sensemaking. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing
Systems (CHI ’93). ACM, New York, NY, USA,
269–276. DOI:
http://dx.doi.org/10.1145/169059.169209

[59] N. Rutar, C. B. Almazan, and J. S. Foster. 2004. A
comparison of bug finding tools for Java. In 15th

https://academicworks.cuny.edu/bx_pubs/50
http://dx.doi.org/10.1109/CSE.2014.142
http://dx.doi.org/10.1109/MSR.2010.5463344
http://dx.doi.org/10.1145/1054972.1054989
http://dx.doi.org/10.1145/2635868.2635892
http://dx.doi.org/10.1109/TSE.2016.2591536
http://dx.doi.org/10.1145/1294211.1294215
http://dx.doi.org/10.1145/2207676.2208664
http://dx.doi.org/10.1145/3266037.3266098
http://dx.doi.org/10.1016/j.procs.2016.02.108
http://dx.doi.org/10.1145/1518701.1518974
http://dx.doi.org/10.1145/3184558.3188736
http://dx.doi.org/10.1109/ICSE.2013.6606701
http://dx.doi.org/10.1109/ICSE.2017.17
http://dl.acm.org/citation.cfm?id=1863166.1863169
http://dx.doi.org/10.1145/169059.169209

International Symposium on Software Reliability
Engineering. 245–256. DOI:
http://dx.doi.org/10.1109/ISSRE.2004.1

[60] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian
Elbaum. 2015. How Developers Search for Code: A
Case Study. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA,
191–201. DOI:
http://dx.doi.org/10.1145/2786805.2786855

[61] M. C. schraefel, Yuxiang Zhu, David Modjeska, Daniel
Wigdor, and Shengdong Zhao. 2002. Hunter Gatherer:
Interaction Support for the Creation and Management of
Within-web-page Collections. In Proceedings of the
11th International Conference on World Wide Web
(WWW ’02). ACM, New York, NY, USA, 172–181. DOI:
http://dx.doi.org/10.1145/511446.511469

[62] Johanna Shelby and Robert Capra. 2011. Sensemaking
in collaborative exploratory search. Proceedings of the
American Society for Information Science and
Technology 48, 1 (2011), 1–3. DOI:
http://dx.doi.org/10.1002/meet.2011.14504801318

[63] Jonathan Sillito, Gail C. Murphy, and Kris De Volder.
2006. Questions Programmers Ask During Software
Evolution Tasks. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT ’06/FSE-14). ACM,
New York, NY, USA, 23–34. DOI:
http://dx.doi.org/10.1145/1181775.1181779

[64] J Stylos and B A Myers. 2006. Mica: A Web-Search
Tool for Finding API Components and Examples. In
Visual Languages and Human-Centric Computing
(VL/HCC’06). 195–202.

[65] T Tenny. 1988. Program readability: procedures versus
comments. IIEEE Trans. Software Eng. 14, 9 (1988),
1271–1279.

[66] Michael L Van De Vanter. 2002. The documentary
structure of source code. Information and Software
Technology 44, 13 (Oct. 2002), 767–782.

[67] Laton Vermette, Parmit Chilana, Michael Terry, Adam
Fourney, Ben Lafreniere, and Travis Kerr. 2015.
CheatSheet: A Contextual Interactive Memory Aid for
Web Applications. In Proceedings of the 41st Graphics
Interface Conference (GI ’15). Canadian Information
Processing Society, Toronto, Ont., Canada, Canada,
241–248.
http://dl.acm.org/citation.cfm?id=2788890.2788933
event-place: Halifax, Nova Scotia, Canada.

[68] Laton Vermette, Shruti Dembla, April Y. Wang, Joanna
McGrenere, and Parmit K. Chilana. 2017. Social
CheatSheet: An Interactive Community-Curated
Information Overlay for Web Applications. Proc. ACM
Hum.-Comput. Interact. 1, CSCW (Dec. 2017),
102:1–102:19. DOI:http://dx.doi.org/10.1145/3134737

[69] Ryen W. White, Bill Kules, Steven M. Drucker, and m c
schraefel. 2006. Supporting Exploratory Search,
Introduction, Special Issue, Communications of the
ACM. Commun. ACM 49 (April 2006), 36–39.
https://eprints.soton.ac.uk/263649/

[70] Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal.
2012. SnipMatch: Using Source Code Context to
Enhance Snippet Retrieval and Parameterization. In
Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology (UIST ’12).
ACM, New York, NY, USA, 219–228. DOI:
http://dx.doi.org/10.1145/2380116.2380145
event-place: Cambridge, Massachusetts, USA.

[71] Heather Wiltse and Jeffrey Nichols. 2009. PlayByPlay:
Collaborative Web Browsing for Desktop and Mobile
Devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’09). ACM,
New York, NY, USA, 1781–1790. DOI:
http://dx.doi.org/10.1145/1518701.1518975
event-place: Boston, MA, USA.

[72] Amy X. Zhang and Justin Cranshaw. 2018. Making
Sense of Group Chat Through Collaborative Tagging
and Summarization. Proc. ACM Hum.-Comput. Interact.
2, CSCW (Nov. 2018), 196:1–196:27. DOI:
http://dx.doi.org/10.1145/3274465

[73] Amy X. Zhang, Lea Verou, and David Karger. 2017.
Wikum: Bridging Discussion Forums and Wikis Using
Recursive Summarization. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative
Work and Social Computing (CSCW ’17). ACM, New
York, NY, USA, 2082–2096. DOI:
http://dx.doi.org/10.1145/2998181.2998235

http://dx.doi.org/10.1109/ISSRE.2004.1
http://dx.doi.org/10.1145/2786805.2786855
http://dx.doi.org/10.1145/511446.511469
http://dx.doi.org/10.1002/meet.2011.14504801318
http://dx.doi.org/10.1145/1181775.1181779
http://dl.acm.org/citation.cfm?id=2788890.2788933
http://dx.doi.org/10.1145/3134737
https://eprints.soton.ac.uk/263649/
http://dx.doi.org/10.1145/2380116.2380145
http://dx.doi.org/10.1145/1518701.1518975
http://dx.doi.org/10.1145/3274465
http://dx.doi.org/10.1145/2998181.2998235

	Introduction
	Related Work
	Programming Support Tools for Finding Information
	Design Rationale In Software Engineering
	Code Comments & Documentation
	Making Sense of Online Information

	Formative Investigations
	Interview Study
	Methodology
	Results

	Analysis of Stack Overflow
	Summary of Design Goals

	Unakite
	The Unakite User Experience
	Detailed Design
	Scaffolding
	Lightweight Interactions
	Summarization
	Contextualization

	Implementation

	Evaluation
	Study 1 - Authoring Unakite Tables
	Procedure
	Results

	Study 2 - Understanding Unakite Tables
	Procedure
	Results

	Evaluation Discussion
	Usability and Usefulness of Unakite's features
	Usage Patterns

	Conclusion and Future Work
	Acknowledgments
	References

