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ABSTRACT
Students of Computer Organization should be able to “learn
by doing” at all levels of computer design. Digital logic cir-
cuitry is frequently taught using simulation software, how-
ever such platforms are often limited to exposing only a nar-
row range of design levels. This paper describes how, in the
new multilevel simulation system DLSim 3, we are able
to incorporate abstraction and extensibility to present the
many levels of complex circuit designs in a single environ-
ment: from low level combinational and sequential circuits,
through models of complete CPUs. Among other features,
DLSim 3 is able to accomplish this by providing three differ-
ent types of circuit abstraction: cards, chips, and plug-ins.
Using DLSim 3, students recognize the uniformity of system
structure, as well as the principles of abstraction that link
the various levels of design.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education;
K.3.1 [Computers and Education]: Computer Uses in
Education—computer-assisted instruction; B.6.3 [Logic De-
sign]: Design Aids—simulation

General Terms
Design, Experimentation

Keywords
Logic Design, Simulation, Abstraction

1. INTRODUCTION
One objective of any good computer organization course is
to demonstrate how a complete CPU can be designed using
only gates as fundamental building blocks. However, the
vast structural complexity present in any reasonable CPU
architecture makes it challenging for students to appreci-
ate the unifying concepts that are foundational to any such
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architecture, and which appear at all the various levels of
abstraction. This challenge is made greater by a lack of
pedagogical tools that uniformly address structural design
at every level.
Many excellent GUI-based logic simulation systems have
been developed and are available for download (Masson [8]
is an early example; see [2, 15], for comprehensive, though
dated, summaries; recent additions include JLS [10], Dig-
ital Works 3.0 [1] and Logisim 2.1.6 [3].) These systems
are very useful for studying basic combinatorial and sequen-
tial circuits. While they generally all provide some abstrac-
tion mechanism (“black boxes”) that permits circuit reuse
and multilevel construction, they are limited by their GUI-
based environments to relatively small models. Some sys-
tems, (JLS and Logisim, for example) scale by providing a
fixed library of high-level elements such as flip-flops, regis-
ters, memories, etc. While permitting more advanced circuit
design, they have limited functionality.
When the course moves on to consider higher level designs,
such as busses and CPUs, logic simulation systems become
less useful. While we know that the products of the logic
level must be there to provide the necessary functionality,
for the sake of controlling complexity we no longer worry
about their fine structure. Consequently we move on to
other, higher-level, teaching tools to drive home the details
of those levels.
Unfortunately, the change in level of abstraction has the
unintended side-effect of creating a disconnect in student
minds. It is difficult for students to appreciate the underly-
ing structure of the CPU-level as logical circuitry. More im-
portantly, the principles of abstraction, and the structural
invariants that link the levels and control the complexity
(e.g., Tanenbaum’s “virtual machine” concept [13]) become
especially difficult to grasp.
We have created DLSim 3 [11] to address the wider spec-
trum of levels present in CPU design. It does this through
vertical scalability as well as horizontal extensibility , as de-
scribed below.
In the next section we describe the features that permit DL-
Sim 3 to act effectively as a multi-level simulator. We focus
in particular on the plug-in API. We then provide several ex-
amples, continue with comparisons to other simulation soft-
ware, and conclude with a discussion of future work.

2. OBJECTIVES FOR THE SIMULATION
PLATFORM

Students should be able to “learn by doing” at all levels of
system design; consequently we wanted to create a unified



platform for studying system structure, from low level com-
binational and sequential circuits, through design of a com-
plete CPU. DLSim 3 is able to accomplish this by providing
three different levels of abstraction. To the abstract circuits
commonly available on logic simulation platforms (which we
call cards), we add two new abstractions: chips, and plug-ins.
These abstraction tools provide two crucial factors necessary
to achieve the desired level of expressiveness:

• Extensibility. Abstract circuits extend the palette
of basic building blocks used to construct larger, more
complex circuits.

• Scalability. Abstract circuits permit designers to fo-
cus on a particular level of design, needing only to
understand the functional behavior of lower levels and
not their implementation.

DLSim 3 has been used to design circuits at all levels, from
simple half and full adders, to prototypes of complete 16-
and 32-bit CPUs, including Mic-1 [13], and MIPS [9]. (See
[4].)

2.1 DLSim 3 Abstractions
DLSim 3 builds on its predecessors, adding several signifi-
cant new features that make it ideal for multi-level use. In
this section we describe these features.

2.1.1 Organizing abstraction: the project
DLSim 3 activity is organized around a project that consists
of a top-level circuit and its constituent subcircuits repre-
sented as cards, chips and/or plug-ins. A single XML file is
used to capture the complete description of a circuit and its
subcircuits. This file can be used to recreate and reconstruct
the entire set of circuits used in a given project.1

A primary goal of DLSim 3 is to provide fluid navigation
between a circuit and its abstracted constituents. Two levels
of functionality are provided. The splash display permits the
contents of a card to be opened for viewing in place by simply
double-clicking on it, however a splashed subcircuit cannot
be edited. Subcircuits are selected for editing by clicking in
one of the left-hand navigation panels.
These navigation panels provide immediate access to subcir-
cuits at any depth (see Figure 1). Note that the top naviga-
tion panel shows the subcircuits according to their pattern
of inclusion, while the lower one is essentially a catalog of the
subcircuits used in the project. Although a subcircuit may
be duplicated throughout the project, only one prototype is
maintained so that an edit to a subcircuit is immediately
propagated to all instances at all levels.

2.1.2 Exportable abstract subcircuits
A subcircuit can be added to any other circuit in the current
project (so long as a loop is not created) by dragging it onto
the canvas from the subcircuit list. In this way, subcircuits
extend the palette of primitive circuit elements. Circuits (in-
cluding compound items containing further subcircuits) may
also be exported and reused in other projects. Each of the
three types of subcircuit encapsulation provides a different
level of visibility and functionality:

Cards. A subcircuit may be encapsulated as a card, and
may be exported (in binary and/or XML) for use in other

1The open structure of the XML representation made it pos-
sible for DLSim to be used in an NSF-funded project to
drive the programming of field programmable gate arrays
(FPGAs) [6].

projects. When exported and reused, it and all of its sub-
circuits will be visible. For example, the 4-bit ALU shown
in Figure 1 has several subcircuits that might be useful else-
where. If one were to export its 1-bit ALU subcircuit as a
card, the export would include all cards telescoped into that
subcircuit (e.g., the 1-bit addition and logic units and the
2-to-1 mux). Any new project using the 1-bit ALU would
automatically include these. Cards provide complete visibil-
ity and access to all levels of the design.
Chips. Encapsulating a subcircuit as a chip has two effects:
1) All of its constituent subcircuits are flattened to the level
of primitive elements, and optimized by removing unneces-
sary connections; and 2) the chip is opaque, appearing in the
circuit list without any of its own subcircuits. For example,
if we were to export the 4-bit ALU as a chip, all traces of
its subcircuits would disappear. Chips may be inserted into
any circuit in the present project without fear of creating a
loop. Or they may be saved and inserted into any other cir-
cuit. They are complete and closed, behaving functionally
as if they were primitive elements.
Plug-ins. Chips are ideal opaque “black boxes” for top-
down design, but are limited to abstracting circuits created
on DLSim’s GUI canvas. Plug-ins are high-level circuit com-
ponents derived from Java class files which implement the
DLSim plug-in interface. In effect, a plug-in is specified
similarly to a circuit defined in some hardware description
language such as VHDL or Verilog.2 Plug-ins are crucial for
achieving the scalability that allows the same tool to operate
at both very low and very high levels.

Chips and plug-ins extend the utility of the standard logic
simulation platform in a number of ways:

• A chip or plug-in can be used by instructors as a tem-
plate for a class assignment. For example, the instruc-
tor could supply a simple circuit (decoder, multiplexer,
etc.) written as a chip to demonstrate its functional-
ity without revealing its fine structure, and then assign
students the task of fleshing out the details to the level
of elementary gates.

• Chips and plug-ins can be used to support top-down
design. For example, in designing a CPU, a high-level
view of the CPU can be constructed using chips or
plug-ins for basic components such as the ALU, control
unit, and register file. One by one, the plug-ins or chips
can be replaced by cards until the design is complete
at the gate level.

• Plug-ins can be used in situations, such as the design
of a medium or large scale random access memory,
which would otherwise lead to scalability problems if
attempted through DLSim’s GUI interface. Plug-ins
are described in detail in the next section.

3. PLUG-INS
The plug-in has proved to be the most powerful of the three
abstraction modes provided by DLSim 3. Because they are
written in Java, plug-ins can be enhanced with capabilities
beyond the requirements of the plug-in interface itself. For
example, a plug-in can be used to perform I/O operations,
interact with files, or use the keyboard and screen in special
ways. A plug-in representing the control store for a micro-
programmed CPU, for example, can read the contents of the

2In fact, compilers that translate VHDL and Verilog into
DLSim plug-ins are in progress.
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Figure 1: a) Top-level view of a 4-bit ALU project; b) 1-bit ALU subcircuit; c) Logic unit subcircuit

store from a file. As another example, a plug-in could create
a console window which could be used to display the contents
of circuit components or supply input values to external bus
lines.
Plug-ins are powerful because they bridge an important di-
vide. On the one hand, their pin-based interface enables the
user to insert them into a DLSim 3 circuit like any other
component (primitive, card, or chip). On the other hand,
their internal operations (i.e., state and computation of out-
put values) are written in Java code. This puts the full
power of a high-level programming language in the hands of
the plug-in writer.
Plug-Ins greatly expand the scale of the circuits which can be
simulated in DLSim 3. We have used them in the following
situations:

• Circuits with a large number of gates. The best
example is a random access memory. Constructing,
say, a 1-megabit RAM using only low-level components
would require many thousands of gates. It would be
cumbersome to build and would severely tax the mem-
ory and speed of the simulator. It is simple to write as
a plug-in, however, and could be used in a variety of
projects, such as implementing a 4-megabyte memory
from 1-megabit plug-in units.

• Circuits with customized views. A view can be
used to specify the color and shape of a plug-in. It can
also be used to display the current state of the plug-in
(for example, the current contents of a register). The
view is essentially a GUI for the plug-in, which can be
used for interactive I/O with a human user.

The power of plug-ins makes it possible to model circuit
components at any level of complexity. The instructor may
choose the level appropriate for a particular unit of study;
that is, which operations should be performed internally by
plug-ins and which should be performed by the simulator
as a result of the wired connections between components.

For example, in studying CPU design, plug-ins would be
used for components such as the ALU and register file. A
unit on external bus design would use plug-ins representing
a CPU, memory, and I/O interface modules. DLSim 3 gives
the instructor the flexibility to match the plug-ins to the
appropriate level.
An example is given by the implementation of an 8-bit se-
quential (shift and add) multiplier shown in Figure 2 (based
on the description in [14], pp. 344-5.) In this circuit a finite
state machine (FSM) program is employed to drive the con-
trol unit. The latter is implemented by a general-purpose
FSM plug-in which loads a file containing the FSM descrip-
tion. During execution, the plug-in displays the current
state and all possible state transitions. A second plug-in
type is used for the three registers holding the multiplicand,
multiplier and running sum; a third uses Java Swing Spin-
ner controls for convenient user entry of test data. A chip is
used to implement the 8-bit adder.
Students may first be assigned the job of designing the FSM
program, in which case the secondary plug-ins provide high-
level support for the other aspects of the circuit. Later, if
focus shifts to the design of those other aspects, students
can be assigned the tasks of creating circuits built from log-
ical primitives (what we call “deep circuits”) with the same
functionalities as the register plug-ins and the adder chip.
These deep circuits may be easily substituted into the exist-
ing multiplier implementation, allowing students to readily
verify their designs.

3.1 The Plug-in API
To encourage and simplify plug-in creation, DLSim 3’s plug-
in API provides a strong support platform. All plug-in
classes extend a base class containing numerous convenience
methods. Plug-in activity is event-driven, and the sim-
plest plug-ins need only specify their input-output function-
ality.



Figure 2: Sequential multiplier using plug-ins for finite state machine-based control, registers and data entry;
a chip is used to implement the 8-bit adder.

Plug-ins may also maintain internal state, load initialization
files, and/or interact with the user through Swing controls.
Authors may provide menu-driven mode options, so that a
single plug-in may function in a variety of environments (for
example, a register that permits the user to select the bit
width for a particular circuit). Plug-in initialization param-
eters are stored as part of the XML description of the circuit
in which it appears.
Writing a plug-in involves the following steps:

1. Identifying the pin arrangement for the plug-
in. Pins may be bundled to simply connections (e.g.,
a 32-pin input bundle on a 32-bit register plug-in).

2. Overriding the evalState method. This is the call-
back method for a plug-in input state change. An
evalState override may change the internal state of the
plug-in, change its output, and/or perform other tasks.

3. Optionally writing a customized view. The View
class is used to determine the visual appearance of the
plug-in on the design canvas.

Plug-in libraries are modeled as jar files that are detected by
DLSim upon startup, making them easy to distribute.

4. EXAMPLES
In this section we consider examples that show how DL-
Sim 3’s abstraction mechanisms enable a wide variety of
pedagogical approaches.

4.1 ALU Design
A popular example of modular design is the arithmetic-
logical unit, or ALU. The ALU described here (Figure 1)
performs basic arithmetic and logical operations on a pair
of multibit inputs to produce a result of the same width.
This example demonstrates a number of fundamental de-
sign concepts that recur often in digital circuits, such as bit-
slicing, carry-ripple cascading, datapaths, and control inputs
and outputs. It naturally decomposes into clearcut subprob-
lems (i.e., half- and full-adders, multiplexers, and single-bit
ALUs).
A 16-bit ALU is a powerful circuit with 35 inputs and 17 out-

puts, yet the modular approach makes it possible to com-
plete the design while introducing only 8 gates (4 in the
multiplexer, 2 in the logic unit, 1 in the full adder, and one
in the adder/subtracter), each of which is replicated many
times in the final circuit.
Using the bottom-up approach, one would first design the 1-
bit half-adder and multiplexer, then incorporate them into
the 1-bit full adder. The latter is then incorporated into
the 1-bit adder/subtracter. A similar 1-bit logical unit is
constructed and combined with the arithmetic unit to form
the 1-bit ALU (see Figure 1). Multi-bit ALU’s are then
built by cascading the carry in/carry out bits. This is the
approach most readily supported by current logic simulation
software.
DLSim 3, however, will also support a top-down approach,
whereby various stages of decomposition can be encapsu-
lated in chips. At each stage the chip is replaced by a cor-
responding card containing some or all of the details of that
stage’s design, which may in turn require some additional
chips. For example, decomposing the top level may involve
the instructor supplying a chip opaquely implementing the
1-bit ALU. Students would then build an 8- or 16-bit ALU
version from the 1-bit chips using the bit-slice design pat-
tern. When assigned this way, the design pattern itself be-
comes the focus of the exercise. Implementation of the 1-bit
version can continue to follow this top-down approach by
supplying chips for half- and full- adders and multiplexers.
Alternatively, one could switch to the bottom-up approach.
The entire design is made fully visible once the fleshed-out
1-bit ALUs are installed in the multibit circuit.

4.2 Using Plug-ins
Here are some of the smaller plug-in-based applications writ-
ten by us and our students. None of the plug-ins described
here would be feasible as circuits constructed out of primi-
tive elements.
Memory: Data and address widths are user-programmable
(8, 16 or 32 bits).
Cache Simulation: For experimentation with various cache
models. A second plug-in collects data for analysis. [12]



Programmable Logic Array (PLA): Simulated PLA cir-
cuit programmed via an auxiliary file. Has been used to im-
plement addition and multiplication circuits, and to drive a
7-pin LED. [5]
Programmable FPGA Components: FPGA logic block
and switching matrix for construction of simulated FPGA
circuits. Components are programmed either directly using
Java controls or with an auxiliary file.
Programmable Finite State Machine (FSM): Imple-
ments a FSM control unit. FSM description is read from an
auxiliary file. Used to implement the control of the sequen-
tial multiplier described above.
MIPS-based calculator Comprised of a calculator key-
board and display plug-in that attaches to the DLSim 3
MIPS simulation [4], and a MIPS program to implement
calculator functions. [7]

4.3 CPU Models
Among the larger designs undertaken for classroom use are
several simulated CPU architectures, each utilizing a library
of specialized plug-ins. These include: a) Mic-1 , a microcode-
based IJVM (Integer Java Virtual Machine) interpreter ([13],
Ch. 4); b) the MicroMIPS architecture ([9], Ch. 5); and c) a
pipelined version of MicroMIPS ([9], Chapter 6). Complete
descriptions of these implementations are given in [4].
These CPU models serve as the basis for various sorts of
project assignments. As in our multiplier example, students
may be assigned the job of replacing various plug-ins with
functionally equivalent deep circuits, for example the ALU
in Mic-1 and MicroMIPS , and the shifter units in Mic-1 .
They may also experiment with extensions to the Mic-1
microcode and Mic-1 and MicroMIPS ISA sets. Finally,
the more advanced among them may be asked to extend
the plug-ins with design enhancements that improve perfor-
mance.

5. COMPARISONS
While many of the existing circuit simulators cited above are
similar to DLSim 3, specifically in their GUI design and in
their support of some form of circuit abstraction, DLSim 3
supports important features that are unique. Among these
are: uniform access to all circuits of a project; XML-based
representation of circuits; the chip abstraction; and the plug-
in API.
The plug-in API is likely the most significant innovation
for unrestricted scaling and extensibility. DLSim 3’s plug-
in facility provides the hooks for incorporating any element
that the user might need, at any level. The plug-in libraries
we have developed clearly demonstrate the power of this
feature.

6. CONCLUSION AND FUTURE WORK
Our approach addresses the “fragmentation problem” that
strikes many students studying Computer Organization, i.e.,
making the myriad of topics covered in that class truly unite
to form a unified whole. More importantly, by taking such a
holistic approach, the conceptual “glue” of abstraction and
recursion is illuminated.
Our current goal is to build a library of cards, chips and
plug-ins which, together with set of progressive laboratory
exercises, will provide a complete approach to circuit and
CPU design. We also plan improvements to DLSim 3’s sim-

ulation environment by introducing timing factors and sim-
ulation scripts.
DLSim 3 may be downloaded from http://www.dlsim.com.
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